Welcome
Digital library of construction informatics
and information technology in civil engineering and construction
 

Works 

Search Results

Facilitated by the SciX project

Hits 1 to 10 of 155

A Grilo,A Zutshi, R Jardim-Goncalves

BUSINESS INTEROPERABILITY IN THE CONTEXT OF BIM-BASED PROJECTS

Abstract: This paper proposes a model that closely captures the factors that are responsible for Business Interoperability in the context of collaborative business processes for the deployment of Building Information Modeling. The Business Interoperability Quotient Measurement Model (BIQMM), uses an interdisciplinary approach to capture the key elements responsible for collaboration performance and BIM platform configuration. Through the quantification of the relevance of each element to the particular collaboration scenario, and with the combination of the BIQMM with a multi-criteria decision making tool, the Analytical Network Process (ANP) approach, this model enables a quantitative analysis of Business Interoperability for BIM-based projects, so that an overall interoperability score can be calculated for enhanced performance measurements. An application scenario is presented and the application of the BIQMM and ANP, provides a comprehensive framework for interoperability measurement. The paper concludes by recognizing that relationships between business interoperability and true AEC performance improvements and subsequent economic benefits derived from BIM-based approaches needs to be further developed.

Keywords: Business Interoperability, BIM; Collaborative Working Environments

DOI:

Full text: content.pdf (206,617 bytes) (available to registered users only)

Series: w78:2011 (browse)
Cluster:
Class:
Similar papers:
Sound: N/A.


A Vasenev, F Bijleveld, T Hartmann, A Dorée

Visualization of asphalt paving process during operations on site

Abstract: Presently important changes are occurring in the road construction industry, resulting in changing roles of road agencies and contractors. Additionally, a lot of new asphalt mixes with new properties are introduced, such as warm or even cold asphalt mixes, thin surfaces, etc. Despite these changes, the current asphalt paving process still heavily relies on the skills and experiences craftsmanship. Instruments to monitor key process parameters are seldom applicable. To overcome these limitations, real-time visualizations of key indicators such as asphalt temperature could provide decisive information to working teams oriented to adjust their operations on site. To move towards real-time decision making support, this paper introduces a workflow to deliver information in meaningful way by providing close to real-time and easily understandable visualizations of asphalt temperatures to roller operators. Using modern technologies like DGPS, temperature linescanner, and wireless connection on site it is possible to deliver visual information about asphalt temperature to support roller operators’ decision making regarding working paths. To implement user-oriented visualization we outlined an overall workflow including equipment selection, infrastructure organization, data processing and visualization phases. We validated the feasibility of workflow implementation through visualization of asphalt temperature on a real-world asphalt paving project.

Keywords: Asphalt paving, construction, infrared thermography, visualization

DOI:

Full text: content.pdf (285,779 bytes) (available to registered users only)

Series: w78:2011 (browse)
Cluster:
Class:
Similar papers:
Sound: N/A.


A. Dikbas, P. Ercoskun & K. Ercoskun

Enabling Sustainability through SOA within the AEC/FM Domain

Abstract: Sustainability is one of the most important research topics for the Architecture/Engineering/Construction & Facility Management (AEC/FM) domain. Two basic factors which enable sustainability are the technology background and the acquisition capability of this technology to the end users – society. Sustainability requires state of the art technologies which reduce the negative impact of population and affiliation. Key aspects of such technology are; it should depend on renewable resources, without waste, cyclical, based on resource productivity rather than labor productivity, and should even be restorative in its effects on the biosphere. Theproblem is, today establishing such technology is not affordable for the average end user. Development, implication, and acquisition of such technologies takes reasonable time though signs from our earth warns usthat we have no more time. The problem itself contains a lot of interoperability challenges in Information Technology (IT), Process and Organizational levels. Although many governments deploy incentives to promote investments on sustainable technologies, money is not the only measure for the market penetration of a technology. A user oriented approach is developed and a proposal is made to elaborate on the problem as a whole within a reference process model. The model determines the key functions, mechanisms and controls, to enable the design and development of sustainable technologies and facilitate the acquisition of those technologies to the society. The process model basically focuses on the Facility Management processes and addresses many aspects of the problem including financial, legal, and ethical issues. The model benefits from Customer Relationship Management (CRM) solutions for construction sector from a previous research and promotes a Service Oriented Architecture (SOA) for tracking the lifetime of sustainable technologies. The model includes decision support functions for the design phase, marketing and competency functions for the implication and acquisition phase, and measurement and evaluation functions for the use phase. The preliminary solution includes business processes rather then IT solutions but interoperability solutions on the IT layer also have been discussed for sustainable development. The model is under development within the joint efforts of a EU funded FP6 project I3CON (Industrialised, Integrated, Intelligent Construction) and a PhD research. It is believed that the model would facilitate the widespread recognition of the requirement of a radical switch to the sustainable technologies.

Keywords:

DOI:

Full text: content.pdf (365,990 bytes) (available to registered users only)

Series: w78:2009 (browse)
Cluster:
Class:
Similar papers:
Sound: N/A.


Ahmed Ahmed, John Kawalek and Mohamad Kassem

A Conceptual Model for Investigating BIM Adoption by Organisations

Abstract: Studies investigating Building Information Modelling (BIM) adoption proliferated in recent years. Existing studies are characterised by both deficiencies in the adoption drivers and factors identified and an insufficient demarcation of key terms and concepts used. The suitability of using the results of these studies to investigate a conceptual model for BIM adoption is therefore impaired. This study presents (a) a holistic set of drivers and factors that influence BIM adoption by organisations, and (b) the theoretical fundamentals for the development of a conceptual model for BIM adoption by organisations. The set of drivers and factors for BIM adoption can be used by researchers and practitioners for different purposes (e.g., assessment, ranking, adoption strategies). The theoretical fundamentals of the proposed conceptual model combine the essential lenses from the pertinent theories (i.e., innovation diffusion theory, and institutional theory) and models (i.e., diffusion dynamic model: top-down diffusion dynamics including formal and informal mandates). The model can be used to empirically investigate the decisions to adopt BIM by organisations and understand the varying influence of different adoption drivers and factors.

Keywords: BIM, Systematic Literature Review, Conceptual Model, Adoption Drivers and Factors

DOI: https://doi.org/10.24928/JC3-2017/0103

Full text: content.pdf (2,159,349 bytes) (available to registered users only)

Series: jc3:2017 (browse)
Cluster:
Class:
Similar papers:
Sound: N/A.


Aish R

Extensible enterprise computing for construction as a necessary pre-cursor for collaborative engineering

Abstract: "Our focus is to consider the construction industry as essentially an information processing system. In its ideal form, practitioners (each with an individual internal representation of design intent) interact with other practitioners by first interacting with an information processing system that manages various shared external representation of design intent. The underlying assumption (from an information technologist's perspective) is that design data is held in a sufficiently complete representation, and that changes to this representation are transactions that move the representation from one consistent state to another. We might call this 'enterprise computing' for construction. This ideal of 'enterprise computing' for construction can be compared to the realities of current practice. - Due to its fragmentation, the construction industry generally perceives its use of information technology in terms of multiple discrete 'individual' systems (with the resulting proliferation of discrete documents) rather than as an enterprise systems. - The drawing tradition, which represents building in 2D, with different representations of the same design split across multiple independently editable documents inhibits consistent management of design and the use of analytical tools. While these may be familiar arguments, there are new object oriented and data management tools emerging from key software developer, such as Bentley Systems, that are designed to address the specific needs of a 'construction enterprise', namely geometric generality, multiple application semantics, multi-user access, and transaction management. These systems also address the scalability and reliability issues required for deployment in practice. Again, arguments for (and advantages of) systems of this type have been discussed in the research literature for more than two decades. The difference is that these systems are ready for deployment. But with this prospect for a broader application of 'Enterprise Computing' for Construction, there are associated other significant issues which may concern both the 'strategic' and the 'creative' practitioners, namely: - Semantic completeness: building a sufficiently complete multi-disciplinary representation of design intent - Data integrity: where any intelligent components are used, these should not become 'orphaned', for example, by object ""instance"" data being detached from the definitions of the corresponding class - Data longevity: the integrity of design and other data should be maintained for the life-time of the building, across new hardware platforms and operating systems. Upgrades to the application and any intelligent components should not disrupt or invalidate existing data - Parallelisation of design: individual designers or engineers should be able to work in parallel, and then be able to synchronize their changes to design data with co-workers - Expressibility: architectural design and construction engineering are open-ended domains. Additional intelligent components should be capable of being added on a ""per project"" basis. Within this context, this paper will explore the essential 'tension' that exists within the Architecture and Construction sectors. On the one hand, there is a perceived need by construction managers for computing tools based on clearly defined and agreed schema to control the construction process (thereby giving economic advantage, comparability, etc.). On the other hand, creative designers who are under other competitive pressures, are expecting a different set of computing tools to allow the exploration of new building configurations and construction geometry. While in the former case a standardisation of schema (as the foundation of a traditional ""Enterprise Computing"" system) would appear to be in order, in the later case the essential 'open-ended-ness' of the creative process demands ""extensibility"" as a pre-requisite of any computing system. These differing requirements (and indeed, attitudes) within the user community, presents software developers with interesting challenges. What technologies (for example, object and/or relational) and what 'domain abstractions' are appropriate foundations for solutions for these differing requirements. Or indeed, what technologies and 'domain abstractions' can be used as the basis for broader set of applications whose design is intended to unify across this apparent ""management-creative"" divide…hence the theme of this paper: ""'Extensible Enterprise Computing' for Construction"". Fundamentally, this is not exclusively an issue of technology. We need to address both the technical and cultural issues if we are to realise our collective ambition of providing effective tools with which to support collaboration between the diverse range of interests that occur within the Architecture and Construction sectors."

Keywords:

DOI:

Full text: content.pdf (827,728 bytes) (available to registered users only)

Series: w78:2000 (browse)
Cluster: papers of the same cluster (result of machine made clusters)
Class: class.communication (0.034023) class.software development (0.019513) class.represent (0.017320)
Similar papers:
Sound: read aloud.

Permission to reproduce these documents have been graciously provided by Icelandic Building Research Institute. The assistance of the editor, Mr. Gudni Gudnason, is gratefully appreciated


Aisha Abuelmaatti, Vian Ahmed

Collaborative Environments and its Effects on Construction Companies: The Current Context

Abstract: The ability of Information and Communication Technology (ICT) to improve and enhance organisation’ productivity as well as their competitive situation has never been greater. Emerging technologies in the UK offer the construction industry many opportunities for computer supported collaborative environments, with regards to addressing some of the aspects that result in a complicated and complex construction process. However, the organisations adopting these technologies usually fail in achieving the full benefits from their implementations. Previous studies in the area have shown that 80 to 90 per cent of ICT investment did not meet their performance objectives. The fact of the matter is that collaborative environments have been evolving and effectively employed in large organisations and are believed to have high potential for Small and Medium Enterprises (SMEs), but the use of collaboration technology remains low among 99% of enterprises in the UK construction industry usually referred to as SMEs employing less than 250 employees. The growing popularity of collaborative environments in the construction industry has, unfortunately, not been matched by parallel empirical research for SMEs.The work reported in this paper serves two purposes. First, the results of an intensive literature review reveals general causes of failure in ICT implementations, and the key areas to focus on during ICT implementation for collaborative working. Second, results from exploratory case study that was conducted in order to assess the use of collaborative environments and their adaptation approaches are analysed in order to further explain what issues are preventing SMEs from achieving their utmost collaboration potential. Therefore, the paper blends a combination of factors which may affect the success of collaborative environments for SMEs and are believed to contribute towards the improvement and implementation of collaboration systems.

Keywords: Construction, ICT standards, re-engineering

DOI:

Full text: content.pdf (102,812 bytes) (available to registered users only)

Series: w78:2010 (browse)
Cluster:
Class:
Similar papers:
Sound: N/A.


Al-Ghassani A M, Kamara J M, Anumba C J, Carrillo P M

A tool for developing knowledge management strategies

Abstract: While organisations recognise that Knowledge Management (KM) is essential for improving performance, many have difficulties in developing strategies for implementation. The nature of knowledge is of particular complexity in organisations such as those within the construction industry characterised by temporary 'virtual' organisations formed for the completion of projects. A significant proportion of construction organisations realise the benefits of KM but most remain at the infancy stages of developing and implementing KM strategies. This paper identifies the need for a methodology to help organisations establishing these strategies. It then describes a framework developed within the CLEVER (Cross-sectoral Learning in the Virtual Enterprise) project at Loughborough University. The framework introduces a methodology that supports KM at both the tactical and strategic levels in order to aid organisations, especially in the construction and manufacturing industries, in developing KM strategies. The methodology was encapsulated into a prototype software system to achieve a simpler format and is easier to use. Industrial collaborators evaluated both the paper format and the prototype software and it is evident that the developed methodology has the potential to provide a very useful way for developing KM strategies and that very little exists elsewhere to assist companies in developing KM strategies in this way. The software prototype was seen as an important enhancement to the paper version. The inviting format, simplified guidance, reduced input duplication, and automated report generation were found the most significant enhancements. The focus of this paper is on the development and operation of the prototype. Its key benefits and lessons learned in implementing it are highlighted in the paper.

Keywords: Construction organisations, knowledge management, KM strategies, software prototype.

DOI:

Full text: http://www.itcon.org/2002/5 (available to registered users only)

Series: itcon:2002 (browse)
Cluster:
Class:
Similar papers:
Sound: read aloud.


Alain Zarli, Eric Pascual, Daniel Cheung

Information and Communication Technology for Intelligent and Integrated Controls in Buildings: Current Developments and Future Research

Abstract: A common and acknowledged vision today is the one that, in the future, buildings, along with their components, equipments, and their environment will communicate and be able to provide information on their status ubiquitously. This real-time available information will be interoperable via common protocols for holistic automation & control. The whole building will be supervised by intelligent systems, able to combine information from all connected devices, from the Internet or from energy service providers in order to efficiently control HVAC (heating & cooling), lighting, and hot water systems along with energy production, storage and consumption devices inside the building, taking into account the users' needs and wishes. In such a context, ICT is recognised as key for empowering people in the (built) universe in which they live, with smart e-metering and new smart e-devices – as well as becoming fully pervasive in the future optimization of energy in the built environment - where “Energy-efficient smart buildings” are to be buildings which contain systems that manage information for an optimal operation of building energy flows over the whole building lifecycle.In such a context, CSTB has developed an open framework for data collection and processing, to be installed in any built environment. It supports networked heterogeneous sensors and actuators (with appropriate communication protocols technology), allows assembling various “business” functions (with easy evolution and extension capability thanks to a concept of service composition and event-driven management between modules), can accommodate any hardware platform constraint (memory, computing power), and can be executed in any environments supporting a Java SE implementation. The framework is itself based on an OSGi platform. The notion of “sensor” is to be considered in a comprehensive way: physical sensor (analogic or logic), complex sub-system or meta-sensor (e.g. Agilent data acquisition system or alike), or even external services (e.g. getting weather data via the Internet). Fields of applications are energy-efficiency in the built environment, but also Ambient-Assisted Living (AAL), internal air quality assessment, collection of data related to inhabitants behaviours, etc..The REEB coordination action (European strategic research roadmap to ICT enabled Energy-Efficiency in Buildings and construction), as a European R&D technology roadmap initiative (achieved in the context of an EC-funded Coordinated Action - http://www.ict-reeb.eu) has identified ICT contributions to the energy efficiency of buildings mainly via improvement (and corresponding RTD) in integrated design (and indeed ICT tools for Energy-Efficient design and production management), integrated and intelligent control, user awareness and decision support to various stakeholders throughout the whole life of buildings, energy management and trading, and integration technologies. As far as the integrated / intelligent control field is concerned, REEB has fundamentally identified the following areas for future investigation:• automation & control: system concepts, intelligent HVAC, smart lighting, ICT for micro-generation & storage systems, predictive control;• monitoring: instrumentation: smart metering;• quality of service: improved diagnostics, secure communications;• wireless sensor networks: hardware, operating systems, network design.The paper will first introduce to expectations, requirements and potential future scenarios for ICT to support integrated and optimised control in future so-called smart buildings. It will then introduce to the current trend of developments at CSTB in this area, and will present the CSTBox as a tool federating and/or complementing functions (potentially relying on already installed systems) in the built environment. After a short presentation of the REEB project, the paper will follow up with exhibiting the outcome of the REEB project in terms of roadmapping RTD activities in this technological field, also providing with a first insight of their potential impact in the future.Acknowledgement: the authors wish to thank the European Commission (DG INFSO) for its financial support to the REEB co-ordinated action. Moreover, the authors are also grateful to the REEB Consortium partners, namely ARUP, ACCIONA, CEA, LABEIN, TUD, UCC & VTT.

Keywords: Energy-efficient buildings, Intelligent and Integrated Control, REEB project, CSTBox framework, Data collection and storage

DOI:

Full text: content.pdf (557,833 bytes) (available to registered users only)

Series: w78:2010 (browse)
Cluster:
Class:
Similar papers:
Sound: N/A.


Alan Bridges

Computational support for early stage architectural design

Abstract: The concepts underlying ‘scenario-based’ design are introduced. From the analysis of a number of struc-tured interviews with practicing designers, key design scenarios are identified. These scenarios are then generalised and outline guidelines developed for structuring early stage design.

Keywords: scenario, architectural design

DOI:

Full text: content.pdf (226,318 bytes) (available to registered users only)

Series: w78:2007 (browse)
Cluster:
Class:
Similar papers:
Sound: N/A.


Alexander J, Coble R, Crawford J, Drogemuller R, Leslie H, Newton P, Wilson B, Yum Kwok-Keung

Information and communication in construction : closing the loop

Abstract: Both nationally and internationally, the architecture, engineering and construction (AEC) sector is highly fragmented : it is dominated by small and medium-sized enterprises (SMEs), the nature of information and knowledge can be dispersed among firms and organisations, and consortia are frequently formed from geographically dispersed firms. In recognition of the potential improvements to be gained through an integrated approach to project information used throughout the design, documentation, construction and operation processes, substantial research is underway in Australia to "close the loop" of information flows between designers and constructors. The paper will explore and discuss both the technology platform in terms of information and communications technology (mobile, high-speed and wide area networking linking the design and engineering offices with the construction site) and the information platform in terms of the content of communications between project stakeholders and the requisite information (traditional spatial as well as non-spatial data) of key concern to the stakeholders at various stages of the project lifecycle. The paradigm shift that has occurred over recent years from stand-alone personal computing (which reinforced fragmentation) to mobile and Wide Area networked computing now provides a platform capable of promoting integration, accessibility and co-operation within the sector with attendant gains in efficiency. A minimum requirement to achieve these gains is access to the right information (not just simple data) at the desired level of scale and detail for a particular stakeholder’s view - information which once collected can be stored and refined and then held for use elsewhere on the project without loss and without the need for subsequent re-entry. The information needs to be available quickly and easily, that is at the right time and in the right location for maximum benefit and project efficiency. Demonstration collaborative systems to support interactive Computer Aided Design and information exchange between project stakeholders such as architects, various engineers (electrical, hydaulic, mechanical, structural) and project managers, in an innovative collaborative manner have become available to bring dispersed project members together electronically. Such systems allow project members attached to a network to undertake a range of information access and exchange from simple e-mail; through on-site access to central project data sources via handheld computers; right through to the use of optional live (or pre-recorded) video to enhance collaboration. Using communications infrastructure, this functionality can be shared in various ways - in a corporate-wide environment between regional and/or interstate offices within a company, or in a consortium situation (between offices of a consortium working together on a specific construction project). The questions then arise as to how such systems fit into industry practice, and how the industry might adapt to embrace new opportunities provided by such technological advances. Ease of access to up-to-date, accurate project information for a range of project stakeholders is being extended through research in the US and Australia to close the loop between some of the stakeholders, and this will be discussed in detail in the paper. As well, the progress of industry-based support for a level of interoperability for building and construction information by organisations such as the International Alliance for Interoperability (IAI Australasian chapter) will also be discussed, plus the likely impact of the adoption of Industry Foundation Classes in the Australian building and construction industry in areas such as the design life for buildings based on durability of materials.

Keywords:

DOI:

Full text: content.pdf (719,511 bytes) (available to registered users only)

Series: w78:1998 (browse)
Cluster: papers of the same cluster (result of machine made clusters)
Class: class.communication (0.057235) class.environment (0.023003) class.synthesis (0.022896)
Similar papers:
Sound: read aloud.

Permission to reproduce these papers has been graciously provided by Royal Institute of Technology, Stockholm, Sweden. The assistance of the editors, Prof. Bo-Christer Björk and Dr. Adina Jägbeck, is gratefully appreciated.


For more results click below:

 

hosted by University of Ljubljana



includes

W78




© itc.scix.net 2003
this is page 1 show page 2 show page 3 show page 4 show page 5 show page 6 ... show page 16 Home page of this database login Powered by SciX Open Publishing Services 1.002 February 16, 2003