Interest and prospects of robotics in Construction

Michel Rubinstein et Jean-Luc Salagnac
Centre Scientifique et Technique du Bâtiment (C.S.T.B.)
Etablissement de Sophia Antipolis
Boîte Postale 21
06562 VALBONNE CEDEX, FRANCE

KEY WORDS :
Building Construction, Robotics

Summary :

As well as other industrial fields, the building industry is progressively being equipped with specialized tools in order to meet several requirements:
- improvement of productivity of building activity (from design to finishing works);
- decrease of direct human work in laborious, dangerous, repeated tasks;
- improvement of quality.

Among these tools, industrial robots, considered as multifunction automatic devices, are more and more used for many activities. One of the main reasons for such success is the ability of these equipments to be connected with informatric means which are in use to create design, computation, control procedures that are essential for the development of the corresponding activity. Important efforts are made nowadays to promote the use of informatic technologies in the building field. Most of the applications are now concentrated on the design stage, but future developments are likely to enhance the automation of the making and assembling of building components. Researches into this subject that are carried out in France and in other countries, mainly in Japan and in the U.S.A., just as the advent of the first worksite robots, replacing man in certain building tasks, will probably drive to modifications of tools and consequently of construction methods. Beyond technical difficulties, that look to be superable, it is necessary to have reliable data about the actual performances of such equipments in order to appreciate the economical advantages.
0. Introduction

Les outils informatiques pénètrent peu à peu le monde du Bâtiment. Après avoir été mis en place pour assurer la gestion des entreprises, ils commencent à s'imposer dans la phase de conception des projets ainsi que dans l'organisation du chantier. Une telle progression est comparable à l'évolution qui a pu être constatée dans certaines industries manufacturières où, partant des applications de gestion, le développement s'est poursuivi jusqu'à permettre la jonction entre les activités de conception et de fabrication : la C.F.A.O. a ainsi pu voir le jour et est apparu comme une valorisation des informations générées au niveau de la conception d'un projet grâce à des systèmes informatiques.

Les outils dont commence à disposer le secteur du Bâtiment produisent également un grand nombre d'informations qui décrivent le bâtiment en projet, tant dans ses dimensions que dans la composition des parois ou dans la qualité des équipements. La conception fabrication assistée par ordinateur s'applique maintenant aux produits spécifiques du Bâtiment (production béton, terre cuite).

Ne peut-on aller plus loin dans la mise en valeur de ces informations en les utilisant pour guider, commander des machines ou pour assister les conducteurs de certains engins de chantier ?

La mise en place d'un tel million viendrait compléter la chaîne de production dans laquelle les liens entre l'acte initial de conception du projet et l'acte final de construction gagneraient en continuité et en fiabilité. L'augmentation de la productivité dans le secteur de la Construction consécutive au fonctionnement d'une telle structure devrait permettre d'inverser une tendance à la baisse de ce facteur constatée dans de nombreux pays industriels.

La présente communication se propose, après un bref rappel de la place de l'automatique dans la fabrication de produits spécifiques au Bâtiment, d'indiquer les axes de réflexion en cours quant à la place de la robotique non manufacturière dans la filière de production du cadre bâti.

1. Les automatismes dans la fabrication des produits en béton et en terre cuite

Il y a déjà quelques années que les procédés de fabrication du ciment vivent chacun des étapes de l'évolution technique de l'automatisation et dans les installations modernes, l'architecture du système de commande de l'ensemble repose sur un réseau hiérarchisé de mini-ordinateurs, le système de gestion de production étant souvent autonome par rapport au système de commande du procédé.

Les usines de fabrication de produits en béton ont évolué plus lentement mais aujourd'hui, dans huit grands pays industriels, la commande des différentes opérations est automatisée dans les installations les plus modernes (1) (2). Cette tendance se retrouve également pour les produits en terre cuite où l'objectif de la gestion entièrement automatique de l'usine est déjà pratiquement atteint dans certains cas. À ce stade, à l'aide d'un micro-ordinateur qui pilote un ensemble d'automates programmables, la conduite intègre :

- l'approvisionnement et les dosages ;
- les manutentions ;
- le séchage et la cuisson ;
- les flux de production ;
- le lancement des commandes.

2. Robotique non manufacturière et Bâtiment

La robotique de chantier constitue un des volets de la robotique non manufacturière, c'est-à-dire robotique qui concourt à l'exécution d'actions professionnelles qui ne s'exercent pas dans le cadre organisé des usines de production manufacturière. Cette robotique non manufacturière est pensée pour des applications visant :

- soit des technologies de pointe : nucléaire, spatiale, sous-marine, ...
- soit des préoccupations de haute sécurité : déminage, lutte anti-terroriste, interventions sur le champ de bataille, ...
- avant d'être envisagée pour des tâches plus triviales relevant de l'agriculture, du nettoyage ou du Bâtiment et des Travaux Publics, tant il est vrai que la prospérité des nations est à la mesure de leur capacité à transférer le savoir-faire et les connaissances des secteurs de pointe aux milieux plus traditionnels.

Aujourd'hui, cette robotisation émerge et répond aux deux justifications du robot qui doit :

- améliorer la compétitivité économique en :
 - réduisant la part de main-d'œuvre par ouvrage ;
 - accroissant la production par unité de temps ;
 - améliorant la qualité des ouvrages produits ;
- améliorer les conditions de travail en :
 - éliminant les tâches peu nobles et peu qualifiantes ;
 - diminuant la pénibilité ;
 - diminuant les risques d'accidents.

Cette émergence ne doit cependant pas conduire à des illusions quant à l'apparition rapide d'une faisabilité indiscutable, tant en termes techniques, qu'en plan économique ; de nombreuses recherches et expérimentations vont être nécessaires.

La méthode de travail généralement adoptée consiste à mener des recherches dans deux voies complémentaires :

a/ introduction sur du matériel existant de techniques issues de la robotique industrielle ;
b/ analyse multilatérale des tâches de construction en vue de déterminer les travaux susceptibles d'être robotisés et de définir les caractéristiques essentielles des robots correspondants.

La première démarche a déjà conduit à la réalisation de machines prototypes. En France, la Société de Construction S.E.C. et le premier fabricant mondial de grues à tour, la Société FOTAL, ont mis au point un prototype de grues automatiques mettant en œuvre un automate programmable qui gère les informations en provenance de capteurs affectés au contrôle des mouvements de rotation et de translation, afin d'assurer la bonne exécution de trajectoires prédéterminées. Au stade de développement actuel, il s'agit plus
d'une machine automatique que d'un robot. D'autres phases de développement sont prévues devant conduire à la réalisation d'un engin de levage autonome, de mise en station rapide, évoluant aisément sur le chantier et dont l'automatisme est programmable par apprentissage.

Au Japon, la Société KAJIMA a réalisé un automate affecté à la pose de barres horizontales de ferrailles. Cette machine est constituée d'un châssis traditionnel d'engin de Travaux Publics équipé de chenilles et doté d'un bras hydraulique. Un ordinateur embarqué assure le contrôle de l'exécution de la trajectoire et la commande du système de pose des barres.

Ces deux exemples rappellent qu'une caractéristique essentielle des chantiers est l'étendue spatiale qui conduit, soit à employer des engins fixes ou faiblement mobiles à grand rayon d'action, soit des engins mobiles. Aussi, n'est-il pas surprenant que les analyses effectuées dans le cadre de la seconde démarche fassent apparaître la mobilité comme une des caractéristiques fondamentales des robots de chantier.

Parmi les critères retenus lors de ces analyses, la pénibilité des tâches (en termes de répétitivité, de fatigue, de danger, de pollution par poussières ou aérosols), apparaît comme l'un des plus importants pour le choix des travaux à automatiser. Ceci conduit à une liste de travaux parmi lesquels l'extraction, le percement des tunnels, la projection de mortiers et bétons, la projection de peintures, le ponçage et le meulage sont ceux dont la robotisation est à envisager en priorité (3).

Actuellement, seules certaines grandes Entreprises de construction japonaises sont en mesure de présenter des prototypes de robots de chantier (4). Ces machines sont des robots mobiles réalisant par exemple le lissage de dalles en béton ou la projection de mortier inducteurs sur des poutres métalliques.

Tous ces projets et ces expérimentations ont pour but de fournir des éléments sur la faisabilité de robots de chantier et sur les performances réelles de ces machines.

Il s'agit essentiellement de prototypes ou de maquettes d'évolution pour lesquels il n'est pas possible aujourd'hui de déterminer les coûts d'acquisition et d'entretien pour une Entreprise.

Il est certain que les futurs robots de chantier seront très différents des robots industriels actuels, ne serait-ce que par la nécessité de la mobilité et par l'obligation de travailler dans des environnements plus agressifs que celui d'une usine. De plus, l'introduction de la robotique de chantier ne se limite pas à la conception de nouvelles machines. Comme dans l'industrie manufacturière, il faut considérer le procédé de construction dans son ensemble, et la machine n'étant qu'une partie du procédé. Cet aspect du problème n'a, pour le moment, pas encore été examiné en détail, mais il est probable que les conclusions d'une telle étude amèneront à revoir assez fondamentalement des méthodes utilisées traditionnellement.

Conclusions

L'introduction de l'informatique sur les chantiers devrait permettre à terme d'utiliser des machines, dont certaines pourraient être des robots, pour effectuer des tâches de construction.

Les gains de productivité attendus d'une telle évolution résulteront de la diminution de la main-d'œuvre affectée à une tâche donnée et de la qualité régulière des travaux effectués par les robots.

Il serait également possible d'utiliser de manière rationnelle les données numérisées du projet pour assurer, au moins partiellement, la définition de l'environnement nécessaire à la navigation des robots mobiles.

Les techniques robotiques nécessaires à la conception de ces machines sont, soit disponibles aujourd'hui, soit raisonnablement envisageables dans un proche avenir.

Le développement de la robotique et des secteurs tels que le nettoyage, l'agriculture, la surveillance, les travaux en milieux hostiles, sera un facteur favorisant l'apparition de robots de chantier.

Toutefois, de nombreux problèmes restent à résoudre qui tiennent à l'état d'avancement de la technique, à la formation des personnels à l'utilisation de ces machines, à l'intérêt économique de ces robots.

Il est peu probable que tous ces problèmes soient résolus à court terme.

La progression lente mais irréversible de l'utilisation de l'informatique par le secteur de la construction débouchera nécessairement sur une utilisation, au moins partielle, de telles machines.

Références

3. A. Murasaki, "Application of robotics to building construction", rapport, Civil Engineering and Construction Robotics Laboratory, Department of Civil Engineering and Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (mai 1984)