

Table I: Results of the Parametric Simulations

<table>
<thead>
<tr>
<th>Building Program</th>
<th>Losses (A)</th>
<th>Gains (B)</th>
<th>Results (G₁)</th>
<th>Utilized Gains (B)</th>
<th>%'age of Gains Ut.</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERI-RES</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>--</td>
<td>125</td>
</tr>
<tr>
<td>MICROPAS</td>
<td>20</td>
<td>0</td>
<td>22</td>
<td>-2</td>
<td>--</td>
<td>215</td>
</tr>
<tr>
<td>SUNCODR</td>
<td>17</td>
<td>0</td>
<td>18</td>
<td>-1</td>
<td>--</td>
<td>1065</td>
</tr>
<tr>
<td>SERI-RES</td>
<td>26</td>
<td>21</td>
<td>16</td>
<td>10</td>
<td>50</td>
<td>135</td>
</tr>
<tr>
<td>MICROPAS</td>
<td>30</td>
<td>24</td>
<td>19</td>
<td>11</td>
<td>45</td>
<td>305</td>
</tr>
<tr>
<td>SUNCODR</td>
<td>25</td>
<td>19</td>
<td>15</td>
<td>11</td>
<td>41</td>
<td>1210</td>
</tr>
<tr>
<td>SERI-RES</td>
<td>32</td>
<td>42</td>
<td>17</td>
<td>15</td>
<td>36</td>
<td>135</td>
</tr>
<tr>
<td>MICROPAS</td>
<td>37</td>
<td>47</td>
<td>14</td>
<td>23</td>
<td>49</td>
<td>305</td>
</tr>
<tr>
<td>SUNCODR</td>
<td>32</td>
<td>32</td>
<td>16</td>
<td>15</td>
<td>30</td>
<td>1215</td>
</tr>
<tr>
<td>SERI-RES</td>
<td>32</td>
<td>41</td>
<td>17</td>
<td>15</td>
<td>37</td>
<td>140</td>
</tr>
<tr>
<td>MICROPAS</td>
<td>38</td>
<td>44</td>
<td>14</td>
<td>23</td>
<td>53</td>
<td>305</td>
</tr>
<tr>
<td>SUNCODR</td>
<td>32</td>
<td>51</td>
<td>16</td>
<td>16</td>
<td>30</td>
<td>1305</td>
</tr>
<tr>
<td>SERI-RES</td>
<td>149</td>
<td>42</td>
<td>118</td>
<td>31</td>
<td>73</td>
<td>225</td>
</tr>
<tr>
<td>MICROPAS</td>
<td>308</td>
<td>47</td>
<td>73</td>
<td>234</td>
<td>500</td>
<td>685</td>
</tr>
<tr>
<td>SUNCODR</td>
<td>141</td>
<td>52</td>
<td>112</td>
<td>29</td>
<td>56</td>
<td>2045</td>
</tr>
<tr>
<td>SERI-RES</td>
<td>58</td>
<td>42</td>
<td>28</td>
<td>30</td>
<td>73</td>
<td>185</td>
</tr>
<tr>
<td>MICROPAS</td>
<td>101</td>
<td>47</td>
<td>56</td>
<td>45</td>
<td>96</td>
<td>380</td>
</tr>
<tr>
<td>SUNCODR</td>
<td>59</td>
<td>52</td>
<td>25</td>
<td>33</td>
<td>64</td>
<td>1615</td>
</tr>
</tbody>
</table>
Norme en matière de conception/dessin assisté par ordinateur (construction)

Charles S. Strelka, président ACNOR 78.3
Dana J. Vanier, président ACNOR B78.5

Division des recherches en bâtiment
Conseil national de recherches Canada
Ottawa (Ontario) KIA OR5, CANADA

MOTS CLÉS

Construction, bâtiments, infographie, conception assistée par ordinateur, conception/dessin assisté par ordinateur, normes de dessin, symbolique du dessin.

RÉSUMÉ

Par suite de la récente vague d' informatisation qu'a connue l' industrie de la construction, il est apparu nécessaire de s' entendre sur la symbolique et la présentation de la conception/dessin assisté par ordinateur avant que la plupart n' emportent le pas. L' existence d' une norme en cette matière serait très utile à l' industrie de la construction et favoriserait grandement le développement de logiciels au Canada et dans les autres pays. C' est pourquoi le comité B78.5 de l' Association canadienne de normalisation a élaboré une norme canadienne s' appliquant à la réalisation et à la reproduction de dessins de construction par ordinateur. Cette norme renforce des recommandations détaillées concernant la symbolique et les techniques en matière de conception/dessin assisté par ordinateur dans l' industrie de la construction. Ce document présente la norme, qui sera publiée à l' été 1986, puis il en trace un historique, indique pourquoi il importe de normaliser la conception/dessin assisté par ordinateur, énonce les objectifs de la norme et précise les avantages que pourrait en retirer l' industrie de la construction.

INTRODUCTION

This paper introduces a standard for computer-aided design drafting (construction) and provides an outline of its development, the requirement for standardization of computer-aided design/drafting, details of the proposed structure of Canadian Standards Association (CSA) Standard B78.5, and benefits of the standard. The standard applies to the computer-aided preparation of construction drawings and, in general context, it establishes detailed recommendations on implementation of drafting techniques and symbolology for computer-aided design/drafting in the construction industry.

HISTORY OF CSA B78.5

The origins of CSA B78.5 are found in a sister document, CSA B78.3-Standard on Building Drawings [1]. The CSA was given the mandate by the Standards Council of Canada to prepare the Standard on Building Drawings as one of CSA's Technical Drawing Standards series. This was done primarily to assist the construction industry in the conversion to metric usage in design and on the building site. The committee was established in 1975 and this standard was released after national-wide approval in 1977. It was later confirmed as a National Standard, CAN3-B78.3-M77(Building Drawings). Subsequent to this, a commentary on CSA B78.3 was published in 1983 by the Division of Building Research (DBR) [2].

In the early 1980's, it was realized by DBR and CSA that computer technology would play an important role in design/drafting in years to come and a standards group should develop a consensus on the basic issues before the majority of the community adopted the technology. A meeting of interested parties was held in October 1983 and this ad hoc group was officially recognized as a CSA Committee in January 1984. The standard was submitted for CSA approval in February 1986. On recommendation by the Canadian delegate to the International Standards Organization (ISO) Technical Committee (TC) 16, Subcommittee (SC) 8, a similar working group has been formed to develop a draft international standard. Delegates from the United Kingdom, Sweden, Norway, Italy, and Finland attended the first meeting in September 1985 and Working Group (WG) 12 is looking closely at the Canadian initiative for direction.

CADD PHILOSOPHY

Computer-Aided Design/Drafting

The Committee recognized that design/drafting had definite boundaries and the standardization of symbols and presentation would be extremely useful not only for the construction industry, but also for software manufacturers. To restrict the standard to production drafting would not include the designers in the industry: engineers, architects, and interior designers. The committee agreed that computer-aided design (CAD) was too large a technology for standardization. Computer-aided design/drafting (construction) was therefore selected as the mandate of the Committee and the standard addresses the requirements of both the drafter and the designer.

Adopt Existing Manual Practice

The final product – the construction drawing – must be readable not only by the technical personnel, but also by the site operator and the construction...
workers. This indicated to the Committee that it would take some time for the entire construction industry to adopt CAD techniques for the technology to reach the various construction disciplines; therefore conventional drafting symbols and methods had to be retained. This standard adopts conventions for symbology and presentation currently accepted in construction practice.

Standard for the Future

Many Committee discussions focused on the merits of automation systems for the construction industry; the majority of existing CAD systems provide only minimal production-time decreases and productivity increases and these systems relate more to the mechanical parts and printed circuit board design than to construction drafting practice. In addition, the low popularity of CAD within the construction fraternity in the early 80’s indicated that the structure of the information was not suited for design/drafting in the building industry. Committee members decided that different directions had to be investigated to meet the requirements of the construction industry and still have the standard amenable to automation. The standard provides a structure reflecting current thinking for computer graphics that can be met by existing CAD systems.

Importance of Information Structure

The major difference between CAD and manual practice is the data handling capability of automated systems. All CAD systems employ an internal data structure, either sequential, hierarchical, or relational, to organize the graphical data. However, in most conventional CAD systems, many capabilities of the computer or data structures are not being optimized by practitioners, or worse, remain undeveloped. This standard is aimed to encourage the use of a data structure relating to the structure of construction information and is written to optimize CAD systems without affecting the final drafting product. This data structure is described at length later in this document.

Optimized CAD Speed and Presentation Possibilities

The computer draws quickly and the information can be easily modified; these are saving graces of CAD technology. Its drawbacks are that some operations, such as toning, hatch, or photo, are more easily accomplished and more cost-effective using manually-placed tone shots. In addition, data retrieval and search strategy using conventional sequential files greatly limits design alterations or “what if?” scenarios and therefore restricts designers. Alternate methods had to be investigated to find a solution that would use the speed and presentation possibilities of the CAD equipment and make it more cost-effective than manual practice. The solution was found in the structure of existing computer graphic standards in related fields. CSA B78.5 encourages a data structure closely resembling that of construction information.

Dissemination of Good Drafting Practice

The information explosion made possible by advanced computer technology has both helpful and debilitating effects. It disseminates information rapidly; the library symbols developed in one province or state, are passed to other locations when CAD software is sold. Unfortunately, the symbol libraries may be of poor quality, inconsistent structure, or just plain wrong, because standards developed by CAD vendors are normally created by junior staff members with minimal construction experience. A well-organized approach would see standards organizations developing the standard symbology, and making this available to CAD vendors; the standard is thus made available to a wide audience.

EXISTING INTERNATIONAL STANDARDS AND PRACTICES IN COMPUTER GRAPHICS

CSA B78.5 was greatly influenced by existing standards in related fields and salient points from these standards are reflected in the structure of the standard for computer-aided design/drafting. These standards are Graphical-Kernel System (GKS) [3] for computer graphic protocols and the Initial Graphics Exchange Specification (IGES) [4] for the exchange of CAD data.

GKS is a protocol for ensuring that graphics software running on one input or output device should run equally well on another. It was adopted as ISO 7942 and is supported by a large number of computer graphics firms. One important feature of GKS is the use of attribute data, i.e., additional information tagged to graphical data. This permits descriptive information, whether alphanumeric or graphical, to be added to specific graphical data. This content is not part of CAD in the construction industry, but the structure of building information has similar requirements and the ability to tag additional information to the graphical representation is imperative.

IGES is a protocol for transferring CAD data from one "turnkey" system to another. The general principle of the specification is for all CAD vendors to send their data to a well-defined file format. Once in this file format, the information can be transferred to any other CAD system. This saves CAD vendors from having to develop a translator to and from all of their competitors’ systems. It is still to be determined if this protocol is graphics-based and numerous levels of compatibility for data transfer already exist. In addition to being necessary in the CAD industry for data transfer, IGES structures reflect the requirements of the structure of construction industry information. This protocol therefore had significant impact on the development of the standard. The CSA B78.5 standard complements IGES and thereby facilitates the communication between different machines and systems.

In addition to the computer graphics standards, a number of manual practices incorporated in the CSA standard include CSA B79.9, Tooling Drawings - General Principles [5], ISO documents relating to graphical presentation for construction drawings, the ASHRAE Handbook [6], and the Handbook of the Canadian Institute of Steel Construction [7].

PROPOSED DATA STRUCTURE FOR CAD INFORMATION

The structure of CAD information encouraged in the standard can be implemented with all CAD systems. It provides the framework for CAD information and will assist in the data entry, data manipulation, and data storage and retrieval at different stages of design and building operations. This pertains to project-specific or library-specific information. Piling and drawing management in the drafting office are beyond the scope of the standard.

Data structure means the arrangement of information in a logical format so as to be easily accessed and modified by the computer. This can be the internal structure the computer uses to arrange the data or the external structure developed by the CAD user to structure the data. This structure encourages the use of an external data structure that reflects the function of
the building component. For example, all the information for the electrical system should be structured to represent the electrical network design.

To date, the only CAD systems that have been layered have been layered systems. Layering was essential in CAD systems of the 70’s, but it is clear that it is also essential in the building industry. Conventional layering was used only one level in the output presentation structure. The user can only turn on or turn off one layer of information on the screen or the output device at a time, thereby restricting the use of the information. Additional work is required by the drafter or designer if the information is required in a different form.

To augment layering, a multi-tiered tree structure is supported in CAD systems. It mirrors the structure of construction information, follows the rationale of the design process, and can be easily understood by the majority of the personnel involved. An example of this form of data structure is seen in Fig. 1.

Primitives

Primitives are the lowest level of a graphic or an alphanumeric entity. They may be line, arc, spline, text, fill, polygon, or any object that cannot be further subdivided by the user. Every primitive can possess a number of attributes.

Pictograms

The use of pictorial representation is encouraged where no confusion arises with the selection of the pictogram. It must also be possible to break down these concepts to facilitate the modification of symbols and to increase the number of available symbols. To differentiate the various types of pictograms, two new terms have been developed: symbols and graphics.

Symbols

Symbols are pictograms not drawn to scale. They can possess a graphical reference which denotes the location of the symbol on the drawing or, schematically, a graphical reference point which denotes the origin or "handle" for rotation, scale and translation (move), and a relationship to a higher functional group. They can consist of a number of primitives, graphics, or other symbols. Symbols possess attributes and their components can also contain attributes (see Fig. 2).

Graphics

A graphic is a dimensionally-accurate pictogram. It may be a simplified representation of a building component, but it is accurate with respect to the principal dimensions. Graphics can possess a graphical location, a graphical reference point, and a relationship to a higher functional group, and can consist of a number of primitives, symbols, or other graphics. Graphics possess attributes and their components can also contain attributes (see Fig. 3).

Groupings

The term grouping is used to denote a function-dependent collection of symbols, graphics, primitives or other groupings. A grouping may include attributes that are related to the entire group or may be specific to individual components of the grouping. Groupings can be as large as a drawing set or as small as a number of primitives.

Use of Attributes

Conventional CAD methods greatly increase the amount of data handled in the standard office owing to the facility of creating "variations on a theme." This, however, creates considerable redundant information. In the most simple case, there is no need to create 20 or 30 different symbols in a CAD library based on permutating of a standard I-beam: one will suffice, but that symbol will possess graphical attributes of height, flange width, and thickness, as well as alphanumeric (i.e., text, letters) that distinguish between types of nearly identical components, as in the case of Fig. 2, or graphical features indicating a different usage, as in the case of Fig. 3. In each case, however, there will always be a need to consider attributes. The use of attributes will assist in the production of bilingual drawings; French, English or both may be shown when required.

The attributes are shown as part of the primitive, pictogram, or grouping. They can be either permanently (for a specific component), globally (for any number of discrete components), or temporarily ("non-permanent"). In addition, attributes associated with lower level components (primitives, pictograms, etc.) must override attributes of higher level components (their parents, grouping, discipline drawings).

World Coordinate System

CAD systems store information in "on-site" measurements and use the computer to calculate the representation at various scales. If a building is 50 metres long it is entered on the CAD system as 50 metres. When plotted or viewed on the screen it can be shown in any scale required. This enhances the solution of problems with standard symbols because the drawing in computer storage is always full scale, whereas the symbols must be able to display the proper information at all scales.

ADDITIONAL BENEFITS OF A CAD STANDARD IN THE BUILDING INDUSTRY

There are numerous benefits for standardization in this rapidly-evolving technology. Some of the more obvious are listed below:

- The standard promotes the use of speed and intelligence of the CAD system in many areas, as they relate to building design/drafting, to obtain a long-term high productivity for CAD users.
- The standard reflects current thinking in computer graphics, implementing faster, more effective techniques for automated drafting and thereby extending the life of the standard.
- The standard acts as a teaching tool for novice designers and draughters by providing standard symbols, line thicknesses, lettering styles, presentation formats, etc., in one document.
The standard assists the sale of CAD/CAM systems by providing a full set of drafting tools to the user; the vendor has a machine to draw lines, but what does he provide him (and thereby practitioners) with the templates, font styles, presentation formats, symbols, etc.

This paper is a contribution of the Division of Building Research, National Research Council of Canada.

REFERENCES

1. CAN B78.3 - M77 - Building Drawings, ISSN 0317-5669 (Canadian Standards Association, Kedale, Ontario, 1977).

2. C.S. Strelka and D. Westwood, "Commentary on CAN B78.3 - M77 - Building Drawings", Building Practice Note 43 (Division of Building Research, National Research Council Canada, Ottawa, 1983).

