

1

1 OVERVIEW

1.1 Introduction
Rule checker software has achieved increased in-
terest and is often regarded as one of the big bene-
fits by using BIM / IFC based software in the de-
sign process (SmartMarket Report, 2009). Clash
detection and check of doublets is one of the most
used examples. This is of course good examples on
the power of these software tools, but the rules are
in principle very easy on purely based on Boolean
expressions. These rules can also be implemented
parametric, allowing the user to change the “rule”
by changing the min / max values the components
are checked against. Borrmann and Rank (2008)
have used 3D Spatial Query Language on BIM
models to check out relationships. The operator
comprise of; metric (distance, closerThan, farther-
Than etc.), directional (above, below, northOf etc.)
and topological (touch, within, contains etc.) op-
erators. Despite this can be complicated to per-
form, the rules itself are simple.

Other appropriate areas for rule checking is ful-
fillments of clients’ demands from space program
or performance (energy), fulfillments of public
demands, industry dependent demands and design
according to given standards etc. In this paper we
choose to use standards as reference.
 The AEC-industry – design and construction – is
regulated by a large numbers of codes (laws, regu-
lations, commands, recommendations, standards)
form different departments and organizations, and
with different goals. This indicates that “some-
thing” that can make this easier and more valid
will be of great benefit.

 So far has the main focus been put on the new
technical possibilities and limitation, which can be
solved in next version of software or IFC-schema.
This innovation approach is not unusual, but the
question is if the time also is mature to look at the
fundamentals for developing rules.
 The scope of this paper is to give an overview of
the foundation for development of computable
rules that can be implemented into commercial
rule-checking software. This domain is illustrated
by the “Scope” in figure 1. In addition we present
some experiences and preliminary results from an
ongoing Norwegian project about methods for de-
velopment of computable rules from standard
code.

Figure 1 The 3-tier framework for development of comput-
able rules

 The list of commercial rule checker (or model
checker) software from Solibri, NavisWorks,
AEC3/SmartCode, Selvaag Bluethink, CRC, Jotne
EPM Technology and others indicate that this has
gone from research to commercial software.

1.2 Improvement of the design process
It is important to be reminded on that a large share
of defects in constructions originates in early

Foundation for development of computable rules

E. Hjelseth
Norwegian University of Life Sciences (UMB), Dept. of Mathematical Sciences and Technology, Norway

ABSTRACT: This paper gives an overview of the foundation for development of computable rules that can
be implemented into commercial rule-checking software. The foundation for development starts with an over-
view over knowledge engineering and its roots in logic, mathematic, linguistic and knowledge philosophy.
This gives motivation investing in a semantic based knowledge system. Otherwise is likely that the BIM
based rule-checker systems ends up as building information mess. The link from the theoretical foundation to
tools and methods can be connected by use of semantic software tools. Preliminary results and experiences
from an ongoing Norwegian project are presented.

2

stages of the construction process. Findings in
Norway, included other European countries, sug-
gest that as much as 40 % of building defects in
Norway can be related to mistakes or omissions in
the design process. (Ingvaldsen, 1994, 2001).
 The potential of support by digital rule checkers
in the design process is illustrated by the doted line
for “Knowledge based design process” in figure 2
below.

Figure 2. Early decision making with knowledge based de-
sign process

 Use of rule-checking software in the design
process will in addition to earlier decisions, also
have other effects. The decision process are ac-
cording to findings by Andersen (2000) character-
ized by;
- Design involves a lot of subjective value judg-
ments, and decisions are often based on experi-
ence, “gut feeling”, or intuition. Design options are
evaluated based on quantitative and qualitative
performance measures. There exists no objective
optimal design solution.
- Decision-making in design happens mainly
through evaluation of proposed design solutions.
 Other benefits by use of automatic rule checkers
software in the design process can be:
- Quality improvement; fields where you are not
expert can be checked.
- Creativity; can verify if a solution is possible, in-
stead of selecting the safe one.
- Learning; Study of feedback of rule violations
gives feedback for learning
 It is also important to remember that an error
free model is not the same as the best design solu-
tions or optimal solutions.

1.3 History of IA and rule checking

Rule checking is a part of the AI (artificial intelli-
gence) computer science. In addition to ICT also
include disciplines as logic part of mathematic, lin-
guistics and philosophy. The history IA is far older
than the computers and a start can be the Greek

philosopher Aristotle (384 BC – 322 BC) which
invented syllogistic logic, the first formal deduc-
tive reasoning system. In the 13th century the
Spanish genius, Ramon Lull (1232- 1316) wrote
De Nova Logica and invented Figura Universalis,
the first device for logical combinatorics (Sowa,
2000 and Buchanan, B.G., 2008).

Figure 3. History of AI, artificial intelligence (IA, 1997)

 Figure 3 take a more narrow scope. 1956 is often
regarded as start of IA, when John McCarthy
coined the term "artificial intelligence" as the topic
of the Dartmouth Conference. First International
Joint Conference on Artificial Intelligence (IJCAI)
held in Washington, D.C. in 1969. Herb Simon
wins in 1978 the Nobel Prize in Economics for his
theory of bounded rationality, one of the corner-
stones of AI. In 1980's was Lisp used in commer-
cial applications. The first autonomous drawing
program, Aaron was created by Harold Cohen in
1985 and was demonstrated at the AAAI National
Conference (based on more than a decade of work,
and with subsequent work showing major devel-
opments). (Buchanan, B.G., 2008). The expecta-
tion to AI has been full of enormous possibilities.
Just code all the information from a textbook – and
you get all the answers you need – after just one
punch on the button. But the reality has not been
that easy. John F. Sowa (2006) refer to the Halo
project where on tried to representing the knowl-
edge in a chemistry book into an AI system. The
results were a score from 40% to 47 % correct and
a cost of about $ 10.000 per page textbook. One
explanation was the heterogeneity for the chemis-
try text leading into the “knowledge soup”. On the
other hand, in 1997 the “computer” managed to
beat the world chess champion, illustrating possi-
bilities of IA in a structuralized domain.
 In the AEC-industry has automated code-
checking or standards analysis and compliance has
been an active area of research since the 1960s. At
CIFE at Stanford University they managed in 1996
to develop a proof-of-concept prototype demon-
strating the feasibility of an online code-checking
methodology. (Han et.al. 2009).
 It was first with use of BIM / IFC based soft-
ware on could achieve practical benefits by rule-
checking software. The AEC related software in-
dustry took in 1995 initiative to found the IAI, In-
ternational Alliance for Interoperability, for im-

3

planting of the IFC-format for improving of the in-
teroperability and content of information ex-
changed between software (Wikforss, 2003). IAI
has now changed name to buildingSMART.

1.4 BIM – focus on information modeling process
Giving a general definition of BIM is today very
hard due to a large variation of the interpretation of
the letters in the acronym. Is M for model (file) or
modeling (process). In this paper BIM is used for
as an acronym for Building Information Model-
ling:
– The process of defining relevant information and
relations between the information and its purpose.

2 PROBLEMS ADDRESSED

2.1 General challenges in development of
computer interpretable rule sets
Experience shows that the process of interpretation
of code developed for humans (skilled profes-
sional) in natural language into formalized rule-
sets who are computational for ICT systems / soft-
ware way is not straight forward (Sowa 2000).
 Use of software for performing digital rule
checking is “Black-box” solution because most of
the software for performing digital rule checking is
done by the software developer. The end-user does
not have complete control, overview or documen-
tations on how the codes are interpreted and im-
plemented. According to Gross (1996) this ap-
proach will lead to lack trust to the results.
Syvertsen (2009) point it that limited control and
insight in use of BIM lead to Building Information
Mess. Simplicity and transiency will have a reveal-
ing effect on the information exchange process.
 The information needed in the BIM (building in-
formation model - represented as a file is in some
cases absent or of poor quality / relevance. Theo-
retic this implies that rule checks can not be per-
formed. But in practice thee are done. This is pos-
sible because in building in some assumptions and
algorithms to find or use information that “nor-
mally fits”. An example is energy calculations
where the walls in the design model from the ar-
chitect do not contain any information about ther-
mal properties. When imported into the energy
calculation program, it has built in some algo-
rithms that assume the open space in the wall must
be insulating with a given value, so the calculation
can be performed.
 Another side is that only 30% of client require-
ment can be / are expressed and values. (Kiviniemi
2005) The remaining 70% must be covered in
other ways, e.g. as presence or not presence of de-
fined qualities or reasoning about defined qualities.

For technical implementation and interoperability
Treldal (2008) found 70 % of the input and output
data can be properly defined in IFC. This implies
that there are several aspects that can not be per-
formed or performed with high precision.

2.2 Validity of the rule - Translation or
transformation
Often only the simple geometrical rules are im-
plemented into the model checker software, leav-
ing some codes / regulation “unsaved”, or done by
software developer (Solibri 2009). This can make
it hard to know how much of the design validation
that can be done by software, and what must be
done manually. The use of rule checker is relative
immature in the AEC industry and methods has to
be developed. (Eastman 2009).
 Figure 4 illustrate that for a source of rules,
(code, standard, law, regulations) there will be
some part that are well fitted for implantation –
“Rulish”, but other parts still have to be done by
skilled professionals – “English”.

Figure 4. Division between the “Person-“ and the “Rulish”
interpretation of different part of standards (codes).

 A system / awareness for what rules can be com-
putable (green zone), what is “tricky” (yellow
zone), and what is best for human interpretation
(red zone). The last item should be supported with
check-lists or other QA systems. After our opinion
is the crucial to know exactly what still has to be
done in the old way. Even if many implementa-
tions of codes are done, we have hard to find
documentation of what is not done. One conse-
quence of this is that on the final stage all parts of
the model has to be checked manually, because
one do not exactly know what the automated rule
checking software has performed.
 This means that executing of a rule must be in-
cluded in a knowledge system. Figure 5 is repre-
senting a knowledge system and illustrates the re-
lations between a “Knowledge model”, who is
represented by the codes (source of rules), “Ontol-

4

ogy” who is representing the AEC-industry spe-
cific and precise definitions (includes systems as
taxonomy and classification), and the “Meta-
model” representing the expression of the com-
puter interpretable rules

Figure5. Knowledge model – Ontology – Meta-models
 (Shakeri et.al. 2001).

 There are today no standards or defined methods
for development and documentation of rules for
implementation into software. In addition to the
logic rule, this must include information about the
necessary content of relevant information in the
model (e.g. represented as an IFC file).

2.3 Knowledge soup
The development of rules involves a checking of
the “constraints” in the documents. An example for
this is a standard for measurements of areas, where
thy use the terms; floor, covering and level, often
in variation combinations with space or area.
Within this standard, and with an attitude that this
must be the same – causes of course no problems.
But when using this terms in combinations with
other standards one can get into “uncertainty” and
answer that this is “normally” the same (but this
can / will depend on the circumstances (construc-
tion). John F. Sowa (2000) calls this situation for
the “Knowledge soup” and points out these four
reasons for their occurrence: a) Overgeneraliza-
tions, b) Incomplete definitions, c) Conflicting de-
faults and d) Unanticipated applications. Sowa fur-
ther notice that experience shows that these
exceptions and borderline cases result from the na-
ture of the world, not from language or logic. We
think one need a system (method, tool) for pre-
checking the validity and reliability rules before
they are implemented into software.
 Without a consistent logical system as founda-
tion knowing its limitations, every system will fail
while scaling. Again, du to the complexity in the
codes is possible to define rules that overrun other
rule without being aware of the consequences. Use
of BIM based rule checkers can in worst cases end
up with Building Information Mess.
 An early example of scaling failure is from
Ramon Lull (1232-1316) who development of a
logic based system for determine combinations.

This worked well with two and three circles.
Figura Universalis with 14 concentric circles with
16 sectors each giving the first combinational ex-
plosions in the history with 1614, over 16 quadril-
lion combinations. This approach demonstrates the
most basic and inefficient Al algorithm: Generate
and Test.

3 THEORY AND METHODS ADAPTABLE
FOR USE IN THE AEC-INDUSTRY

3.1 Theoretical foundation for development of
rules
Based on the multi discipline foundation of AI on
logic, mathematics, linguistic, philosophy and in-
formatics there are a large number of theories for
defining and develop reasoning systems for logic
of rules. There should be no need for starting with
“empty sheets”
 Methods and theories are in nature deductive,
and aiming to re-use the same “principles” in many
different situations. This approach can be used to
develop modules – topology of rule – same struc-
ture of rule applied on different construction parts
– reuse and modular assembling of rules into a rule
set. To discover this pattern of modules, use of
metalanguage will be of great help. John F. Sowa
(2007) therefore contradicts people who say that
metalevel representations are complex and ineffi-
cient. For many applications, metalanguage can
significantly reduce the complexity, as in the fol-
lowing sentences in controlled English and their
translations to an algebraic notation:

“Every house is a construction”
⇒ (∀ x)(house(x) ⊃ construction(x)).

“House is a subtype of Construction”
⇒ House < Construction

 Every operator of any version of logic is a spe-
cialization of some word or phrase in natural lan-
guage: ∃ for there exists, ∀ for every, ∧ for and,
∨ for or, ⊃ for if-then, ~ for not, ◊ for possibly,
and □ for necessarily. The metalevel words for
talking about logic and deduction are the same
words used for the corresponding concepts in natu-
ral languages: truth, falsity, reasoning, assumption,
conclusion, and proof. This notation makes it com-
putable and suitable for support by ICT systems –
and for defining re-usable modules of rules and
logic.
 Another interesting thing is to be able to de-
scribe relationships between topics, and for this the
topic map standard provides a construct called the
topic association (Pepper, 2000). Topic maps is

5

well defined in ISO 13250 series of standards. This
semantic network builds on the concept of concep-
tual graphs (CGs). They express meaning in a form
that is logically precise, humanly readable, and
computationally tractable. Conceptual graphs can
be translated to predicate calculus and to the
Knowledge Interchange Format (KIF) (Delugach,
2006). Rule Interchange Format (RIF) developed
by the W3C consortium is as a Resource Descrip-
tion Framework (RDF) schema.
 The RDF triples indicates it connetction to OWL
ontologies, whit all its possiblities and frameworks
for further development. (Bruijn, 2005).
According to Beetz et. al. (2005) is an OWL nota-
tion of IFCs advantages over generic XML schema
representation.

3.2 Classification in the AEC industry
One of the benefits by classification is to find the
right information base, and its relation to other in-
formation. Amor and Xu (2005) state that the
amount of useful information available on the web
for A/E/C professionals increases inexorably. They
have tested numerous search engines allow users to
identify potentially useful information in this vast
resource, though the majority of these systems
work purely on the search terms entered by the
user. This means that the web pages which are
found are often not as relevant to the user's needs
as would be expected. What is returned is certainly
far from the promise of the semantic web where
the properties of the content can be readily ascer-
tained.
 There will therefore still be need for the tradi-
tional developed classification system. In a report
developed for Standards Norway, Bakkmoen
(2009) point out that the complexity and number of
different systems clearly illustrates the need for
harmonization or mapping between the systems if
structure and classification at any time needs to be
transferred across borders between nations, organi-
zations, or classification systems. With references
to preliminary study he finds that IFD Library ap-
pears to be the most obvious alternative available
to the building and construction industry.
 Borup (2008) points out following fundamentals
for classification;
– Existing classification systems like OmniClass,
BSAB, Uniclass are Building Information Models
of the classified and defined objects in the con-
struction domain. All objects in classification
BIMs are corresponding to concepts. They all have
names based on the language used as a tool in our
thinking
– Classification systems need solid theoretical
foundations and standardized methods for their
creations -e.g. use of the international standardized

concepts and methods in the terminology domain
including standardized definitions of definition
– Models muddle in the construction industry can
be an increasing problem.

On the other side, it can now be a “Window of op-
portunity” to establish a sustainable foundation for
rule development. The technical side of BIM / IFC
is in a large degree solved, and the remaining parts
can be solved by extension of entities and/or prop-
erty sets in the IFC-schema. (Ding et. al.
2004).The knowledge theories and methods itself
are well enough developed. Common use of the
standardized 3-tier framework in table 1. can be
used for specifying deliverables (from different
suppliers) within each layer. Instead of the soft-
ware depended situation of today. Deliverables in
second layer could be re-used in a number of im-
plementations in third layer.

3.3 Concepts for mapping ontology’s - IFD
IFD – Interntioanl Framework for Dictionaries can
be rgardes as a concet for mapping different
calssifications. As illustrated in figure 6, IFD is a
mapping between different parts of different classi-
fications tables. This will lead to an increasing
numbers of relations, and a method for presenta-
tion of these relationships is by use of the Hyper-
bolic tree concept. (Bell and Bjørkhaug, 2006)

Figure 6. IFD as a mapping mechanism for classification ta-
bles. (Bell and Bjørkhaug, 2006).

 In order to automatically verify the information
in an exchange process we need to detail the in-
formation further than the general level of the IFC
standard. For example, when the architect supplies
information about the type of materials in the
beams and columns, she must do so using a plain
text string. Even if she spells this correctly, there is
no guarantee that the receiving application will
understand exactly what this text string means.
And what if she uses a different language, dialect

6

or uses the plural form of the word? Ideally the
computer should be able to understand even this
type of information in the IFC formatted informa-
tion received. This is typically the scenario ad-
dressed in semantic searches on the web. (Bell
et.al., 2008, Bell and Bjørkhaug, 2007b)
 The IFD standard is based on the ISO 12006-
3:2007 “Building construction -- Organization of
information about construction works -- Part 3:
Framework for object-oriented information” stan-
dard, and has many similarities with the EPIS-
TLE4 standard for the Oil and Gas industry (Bell
and Bjørkhaug, 2007a).

3.4 Theories and methods for finite domains
But is it still possible to avoid the “Knowledge
soup”? One approach can be to consider the AEC-
industry sources for rules (standards and likewise
described codes and regulations) as finite domain
of knowledge and professional language (ontol-
ogy).
 The first element is look if there is a language
where true and common understanding. Alfred
Tarski (1935) concludes in “The concept of Truth
in Formalized Languages” that it is a hopeless ex-
ercise with regard to natural language, because of
its complex and mutable nature. Given the non-
universal nature of formal languages (specifically,
the usual absence therein of terms belonging to the
theory of language), a distinction must be made be-
tween the object language (the language under
study) and the metalanguage. The metalanguage
contains the names of the expressions of the object
language and of the relations between those ex-
pressions, and usually the full vocabulary of the
object language. But if one look at finite domains,
solutions is possible” The problem of the definition
of truth obtains a precise meaning and can be
solved in a rigorous way only for those languages
whose structure has been exactly specified”. For
other languages — thus, for all natural, "spoken"
languages — the meaning of the problem is more
or less vague, and its solution can have only an ap-
proximate character (Tarski, 1944). If we let this
be the “indicator “that a solutions is possible
within the AEC domain of knowledge, The chaos
of Babel-like communication can be avoided or at
least reduced with a common language of rules.

4 METHODS FOR THE AEC INDUSTRY

4.1 From English to Rulish versions of standards
Based on theory (Sowa, 2000, 2006, 2007 and Tar-
ski, 1935, 1944) is should be possible to develop a
logic system with a finite domain and a structured
language. The languages and semantics in stan-

dards are written in a defined way, and are suitable
for translating into formal notation in a truthful
way. The argument for this statement is based on
the ISO normative rules for structuring and draft-
ing international standards in table 1.

Table. 1 — Requirement (ISO, 2004)

Verbal form Equivalent expressions for use
in exceptional cases

shall is to

 is required to

 it is required that

 has to

 only … is permitted

 it is necessary

shall not is not allowed [permitted] [ac-
ceptable] [permissible]

 is required to be not

 is required that … be not

 is not to be

Do not use “must” as an alternative for “shall”. (This will
avoid any confusion between the requirements of a docu-
ment and external statutory obligations.). Do not use “may
not” instead of “shall not” to express a prohibition. To ex-
press a direct instruction, for example referring to steps to
be taken in a test method, use the imperative mood in Eng-
lish. Example: “Switch on the recorder.”

 For “Recommendation, (Table H.2) the ISO
standards use the verbal form: Should / should not.
for “Permission” (Table H.3) the ISO standards
use the verbal form: May / need not, and
for “Possibility and capability” (Table H.4) the
ISO standards use the verbal form: Can / cannot,
all with equivalent expressions for use in excep-
tional cases similar to Table H.1. (ISO, 2004).
 By use of semantic method it should be possible
to developed “Rulish” version ready for implemen-
tation into software. Laws and regulations also
have a similar way of using modal auxiliary verb.
This use of normative reference is also imple-
mented in the BIM-manual version 1.1 from
Statsbygg, Norwegian Public Construction and
Property Management (same as GSA in USA)
(Statsbygg, 2009).

4.2 ISO supported system for domain knowledge
According to Sowa (2000) should the general prin-
ciples for constituting an expert system be based
on a background knowledge about the world, in-
cluding ontology, axioms, and defaults. This in-
cludes the following topics:

7

- Ontology: A classification of the types and sub-
types of concepts and relations necessary to de-
scribe everything in the application domain.
- Definitions: Necessary and sufficient conditions
that define new types of concepts and relations in
terms of more primitive concepts and relations in
terms of more primitive types.
- Constraints: General principles or axioms that
must be true of the instances of those concepts.
- Defaults: Information that is expected to be true
of the instances of various concept types.
- Behavior: Rules that govern the actions by and
upon each type of object and the interactions of
collections of objects.
 For mapping of specification to logic is Concep-
tual Schema Modeling Facilities (CSMF) useful.
The ISO JTC 1/SC 32 project on Conceptual
Schema Modeling Facilities (CSMF) is developing
standards for appropriate languages and tools.
(Sowa, 2000). Conceptual modeling is central for
systems analysis, database modeling, and knowl-
edge engineering, to support the development
processes from original codes into computable
rules.

4.3 MOKA and participants
MOKA - Methodology and software tools Ori-
ented to Knowledge based engineering Applica-
tions) is a name given to a methodology as a part
of ESPRIT research program. It was assumed to
work out the following:
- knowledge representation forms of a product and
its designing process as well as the methods of its
record,
- computer application for aiding record, represen-
tation and managing of the knowledge,
- possibilities of further automatic generation of
KBE application code from computer application.
 MOKA is used for obtaining knowledge in de-
signing process, for elaborating KBE (Knowledge
Based Engineering) and for creation of knowledge
base for this system. It uses MOKA methodology
and in particular informal model from this meth-
odology and the concept of ICARE forms (Illustra-
tion, Constraint, Activity, Rule, Entity). Knowl-
edge referring to the structure of a designed
product and its designing process is collected by
means of forms.
 Ontology’s can be created by means of Protégé
application and can be exported to many different
formats including RDF(S), OWL XML Schema.
Protégé is a free open source tool, it is an applica-
tion which aids creation of knowledge bases, in-
cluding ontology edition and knowledge acquisi-
tion from experts. (MOKA, 2007).

4.4 Using the IFC constraint model
The IFC constraint model can be developed such
that both simple and complex constraints can be
captured. This is done through the provision of a
constraint aggregation where the aggregation can
be characterized by a logical AND, logical OR or
logical NOT operator. The relationship between
IDM and IFC is illustrated in table 2.

Table 2 Relationship between IDM and IFC. (Nisbet 2008)

IDM and IFC
IDM IFC representation
Process Map IFC Process Model
Process/Sub
Process

IfcRelAggregates/IfcRelNests

Proc-
ess/Actor

IfcReiAssignsToActor

Process Se-
quencing

IfcRelSequence

Process At-
tribute

IfcRelDefinesByProperties/
HasPropertySet

Process
Constraint

IfcRelAssociatesConstraint

Constraint /
Sub Con-
straint

IfcConstraintAggregationRelation-
ship

Model View IFC Constraint Model

 The IFC Constraint concept can be integrated
into the IDM development method described in
ISO/DIS 29481-1 “Building information models --
Information delivery manual -- Part 1: Methodol-
ogy and format “. Rules that are applied to func-
tional parts and exchange requirements are col-
lected together into rule-sets. Each rule-set is
expected to deal with a particular topic. However,
a rule-set may contain rules from many origins
provided that they are collected together in an or-
ganised way. (Wix et. al., 2008)

4.5 Translation vs transformation
If it is possible to get at direct match from original
languish into “rulish”; the rule definition process
can be performed as a translation. However, not all
code related text, even standards is suitable for
this. The first step is trying to “normalize” the
original text into a formal text that can be trans-
lated. If this will result in – or can result in – dif-
ferent consequences than the original code, one
must be utmost careful. However, automatic rule
checking will in many cases be very useful. A way
to go around is to explicit define this as a trans-
formed rule, and, a dialogue box give information
about this when the rule is activated in the rule
checker software.

8

4.6 Official computable rule-sets - Rulish version
of standards
As discussed above there can be minor formal or
theoretical differences between the standard in na-
tive languish and “rulish” without this leads to any
general consequences for assessment of the build-
ing. An example on this can be the accessibility for
a wheelchair through doors. The ISO/DIS 21542
“Building construction - Accessibility and usabil-
ity of built environment” defines a minimum width
of light opening to be 800 mm. For assessment of
this one must have the very detailed information
about the door-casing – and the opening angel of
the door. If the door is only open in 90 the thick-
ness of the door lead will cover some of the open-
ing compared to complete open parallel to the wall
is stand in. This demands very much information
about the door and it instance (opening). Knowing
that doors are industrially produced in 100 mm in-
tervals (Modules = M), using a 9 M door (outer
door-casing width 888 mm) will give adequate
opening width. Without this transformation, the
accessibility would be very hard to check auto-
matically.
 By having an official “Rulish standard” version,
these transformations could be transparent, and so-
lutions based on consensus can be applied instead
of “tricks” from the software developer. In the ex-
ample above the Rulish standard should have a
warning (information) for door with less than 950
mm outer door-casing width, that the defined prop-
erties to the door must be manually checked.

5 NORWEGIAN PROJECT (IN PROGRESS)

5.1 Scope and participants
The scope of this Norwegian project is to develop
methods for translating and / or transforming
building related codes in expressed documents as
standards, national codes and regulations for use in
digital rule (model) checker software. The methods
should be software independent. Implementation
and testing of IFC model import (IFC 2x3)/ IFC
schema (IFC 2x3 / 2x4) limitations is not included.
 The participants in this ongoing project, ending
December 2009, are; Standards Norway (national
standardization organization), Statsbygg (- acts on
behalf of the Norwegian government as property
manager and advisor in construction and property
affairs), BE (National Office of Building Technol-
ogy and Administration, with professional assis-
tance from the consulting company Catenda, a
spin-of from the research organization Sintef-
Byggforsk. (Bell, H., Hjelseth, E., Bjørkhaug, L. ,
2009). Link to information abut the project is listed
in reference.

5.2 Experiences for this project are so far:
 1) Inconsistency in the standards is identified.
This is mostly related to use of different terms on
same object / purpose in different places within the
standard. An example for this is a standard for
measurements of areas (NS 3940), where they use
the terms; floor, covering and level, often in varia-
tion combinations with space or area. Within this
standard, and with an attitude that this must be the
same – causes of course no problems. But when
using this terms in combinations with other stan-
dards one can get into “uncertainty”.
 2) A common ontology within the AEC-industry,
and a system for mapping of terms and definitions
to existing standards and classification tables will
clear up misunderstanding and uncertainty. Use of
synonyms must be included.
 3) Transparency of the rules is important. The
major issue is to have full control of which code
have been defined for implementation in software,
and which code can not be implemented and must
be interpreted by skilled humans.
 4) Standard is interlinked by use of normative
references to other standards. A standard can there-
fore no be used as the only source.
 5) The standards are developed to be used in
“known” situations. A description or “complexity”
of the model and demand to information in the
model is necessary for not “fooling” (intentional or
not) the model.
 6) Manual code checking is also error prone. Per-
sonal interpretations and overlooking errors are
“natural”. Compared to use of digital rule checkers
on get the same result with the same input each
time, making it possible to indentify errors by ex-
perience and improve the system over time.
 7) “Computerizing” of the codes is a process it-
self who leads to better understanding. This can
supplement the development of new standards.
One makes the computable (“computerized”) ver-
sions first, and then “re-writes” it for natural lan-
guage and use by skilled professional persons. In
this way one will have all the details in place and
have the possibility to “test the consistency“ of the
standard.

5.3 Suggestion to an AEC-based method for
development of computable rules
During this project we have looked at different
methods, both theoretical, and some examples
from different industries. The suggested procedure
is based on KBE approach and traditional stan-
dardization work processes. A simplified descrip-
tion of the 6 stages is listed below. Please not that
this stages are interactive and loop back is possible
and often essential for the result.

9

 Stage 1) Define the scope and sources for the
rule set E.g.. NS 3490 Standard for areal and vol-
ume calculations with guidelines, defined docu-
ments from BE. This will make the foundation of
this rule-set to be based on explicit expressions and
interpretations. This will be documented.
 Stage 2) "Computability assessment" – re-
arrange the code so that they are as transparent as
possible. We believe this is best don by a skilled
person from the AEC industry (and not by software
experts). This includes use (development) of sup-
porting systems as terminology, ontology, taxon-
omy and classification with mapping between dif-
ferent tables, connections to other systems,
standards and regulations etc.
 Stage 3) Committee assessment / approval
(this work will consist of own procedures). This is
a QA of the prepared work form stage 2. to ensure
that the rules are truly computable. Team work
(committee) is especially needed for revealing
“forgotten questions and limitation of use (com-
plexity).
 Stage 4) Logic rule notation. The computable
rules will be transferred to a logical notation (for-
mat and support tool are not decided yet).
 Stage 5) Choose of ”rule format” for presentation
of computable rules so it can be implemented into
software (can be XML-or EXPRESS based).
 Stage 6) Implementing (programming) the rules
and information text specific in the rule checker
software. This includes also the aspects with
documentation, changes and testing.

6 DISCUSSIONS

Even though we see increased use of commercial
rule checking software – often presented as now
can everything be checked automatically – it is
hard to find documentation of rules and how they
are implemented in relation to the source of code.
This appears like a “black-box” process imple-
mented after the “Generate and test” attitude. We
have found several interesting research projects
with focus on possibilities and limitation regarding
IFC implementation. The benefits by using a
“framework” and supporting tool is increasing
with its complexity. Developing clash detection,
there is of course no little for semantic support,
due to its topological nature and use of Boolean al-
gebra. With relative few implementations based on
single sources of code, one may not have discov-
ered the problems this paper predicts. On the other
hand, developing the foundation require expertise,
time and money.
 The suggestion for further research is to develop
rules according to the 3-tier framework. Finding
optimal solution and relevant support tools for dif-
ferent types of rules and complexity is important

for practical impact of the 3-tier framework in the
AEC industry compared to “Generate and test”.

7 CONCLUSIONS

The most important is that the results after an
automatic rule checking are true. Avoiding the
“Knowledge soup” is therefore crucial when de-
veloping rules for software implementations. The
3-tier framework indicates how theory and sup-
porting (logic and semantic) tools can support de-
velopment of applicable rules.
 Our suggestion is to have a transparent method
for development of computer interpretable codes
expressed as rule sets. In the Norwegian project we
have included a committee who can be used to “cut
through the Gordian knot” and develop rules that
will cover the intention with the code, and not only
be true to the letters of code. This can increase the
number of computable rules.
 It is also important to have a clear distinguish
between what can be done in the rule checker soft-
ware, and what must be done by skilled profes-
sional must. If not, one must perform a manual
control after all, leaving digital code checkers to
the less important (easy) cases. On the other hand,
rule checkers can be one of the best ways for utili-
zation of BIM in the AEC industry.

PREFERENCES

Andresen, I. 2000. A Multi-Criteria Decision-Making
Method for Solar Building Design. Norwegian University
of Science and Technology, Faculty of Architecture and
Fine Art. ISBN: 82-7984-044-3.

Bakkmoen, K.I., 2009. Classification of building and civil
engineering types for the AEC industry Report developed
for Standards Norway, C. F. Møller Architects, Norway.

Beetz, J., van Leeuwen. J P, and de Vries, B. 2005. An On-
tology Web Language Notation of the Industry Founda-
tion ClassesAbstract. Presented at CIB W78 in 2005
http://itc.scix.net/cgi-bin/works/Show?w78-2005-d1-4-
beetz /Accessed: 2009-06-30)

Bell, H. and Bjørkhaug, L. 2006. A buildingSMART Ontol-
ogy eWork and eBusiness in Architecture, Engineering
and Constructin, page 185, ECPPM 2006.

Bell, H. and Bjørkhaug, L. 2007a. IFD and IFC,
http://dev.ifd-library.org/index.php/Ifd:Ifd_and_Ifd

Bell, H. and Bjørkhaug, L. 2007b. IFD in a Nutshell,
http://dev.ifd-library.org/index.php/Ifd:IFD in a_Nutshell.
(Accessed 2009-06-30)

Bell, H. et. al, 2008. Review of the Development and Imple-
mentation of IFC Compatible BIM Erabuild Report

Bell, H., Hjelseth, E., Bjørkhaug, L. , 2009. Standardized
Computable Rules. Pilot study of methods for
development of computable rules. Standards, Norway,
BE (National Office of Building Technology and
Administration), Statsbygg and Catenda.
http://www.standard.no/no/Fagomrader/Bygg-og-
anlegg/Digital-byggeprosess/Digitale-regelsjekkere/

Borrmann, A. and Rank, E. 2008. Topological Operators in a
3D Spatial Query Language for Building Information

10

Models Computation in Engineering, Technische Univer-
sitat Munchen, Germany

Borup, L. 2008. Comments to ISO 12006-02 Lise Borup,
Presentation 2008-09-18, ISO/TC 59/SC 13 Workshop

Bruijn, Jos de, 2005. Document title: RIF RDF and OWL
Compatibility Editor, Free University of Bozen/Bolzano
(Accessed 2009-30-06)

Buchanan, B.G., 2008. A Brief History of Artificial Intelli-
gence.
http://www.aaai.org/AITopics/pmwiki/pmwiki.php/ AI-
Topics/BriefHistory (Accessed: 2009-06-30).

Delugach, H. 2006. A World of Conceptual Graphs,
http://conceptualgraphs.org/body.html (Accessed 2009-
06-30).

Ding, L. Drogemuller, R. Jupp, J. Rosenman, M. and Gero, J.
2004. Automated Code Checking, CRC Construction In-
novation. In: Clients Driving Innovation Conference.
Gold Coast, Queensland, Australia.

Eastman, C. 2009. Survey on Rule Checking Systems (paper
in progress). Georgia Technical University, USA.

Gross M. D. 1996. Why can't CAD be more like Lego?
CKB, a program for building construction kits. Automa-
tion in construction, Vol. 5, No. 285-300.

Han, C.S. Kunz, J. and Kincho, H. 2009. Law. Making
Automated Building Code Checking A Reality, Center
for Integrated Facility Engineering Stanford University,
USA

IA. 1997. The history of Artificial Intelligence
http://library.thinkquest.org/2705/history.html (Accessed
2009-06-30)

Ingvaldsen, T. 1994. Byggskadeomfanget i Norge. Ut-
bedrings kostnader i norsk bygge-/ eiendomsbransje- og
erfaringer fra andre land, NBI Rapport 163, Oslo

Ingvaldsen, T. 2001. Skader på bygg: Grunnlag for systema-
tisk måling, NBI Rapport 308, Oslo

ISO. 2004. ISO/IEC Directives, Part 2. Rules for the struc-
ture and drafting of International Standards, 5th Edition.

Kiviniemi, A. 2005. Requirements Management Interface to
Building Product Models, Ph.D. thesis CIFE Technical
Report # 161. Center for Integrated Facility Engineering,.
Stanford University.

MOKA. 2007. Methodology and software tools Oriented to
Knowledge based engineering Applications)
http://kpkm2.polsl.pl/PROJEKTY/KBE/moka_ka/moka_
ka_en.html (Accessed: 2009-06-30)

Nisbet, N. 2008. IDM Authoring using XML, document ver-
sion 0.4, dated 2008-11-09,
http://www.iai.no/idm/idm_resources/idm_templates/idm
XML_authoring.pdf (Accessed: 2009-06-30)

Pepper, S. 2000. The TAO of Topic Maps, Affiliation: Onto-
pia AS, Oslo, Norway
http://www.ontopia.net/topicmaps/materials/tao.html (Ac-
cessed 2009-06-30)

Shakeri C., Flores, I., and Houard, A. 2001. Dassault Sys-
tems. Research Topics. Knowledge models. Ontologies.
Meta-models.
http://www.ti.arc.nasa.gov/projects/vib/day2/ppt/Shakeri_
day2.ppt (Accessed 2009-06-30)

SmartMarket Report (2009). Building Information Modelling
Trends SmartMarket Report. McGraw-Hill Companies,
ISBN: 978-1-934926-25-3. www.analyticsstore. con-
struction.com (Accessed 2009-06-30).

Solibri. 2009. Solibri Model Checker www.solibri.com (Ac-
cesed 2009-04-20)

Sowa, J. F. 2000. Knowledge representation: Logical, Phi-
losophical and Computational foundations, Thomson
Learning. ISBN 0 534-94965-7

Sowa, J. F. 2006. The Challenge of Knowledge Soup, Pub-
lished at Research Trends in Science, Technology and

Mathematics Education, Mumbai,.
http://www.jfsowa.com/pubs/challenge.pdf,

Sowa, J.F. 2007. Fads and Fallacies about Logic. IEEE Intel-
ligent Systems, VivoMind Intelligence, Inc.

Statsbygg. 2009. BIM-manual 1.1,
http://www.statsbygg.no/FilSystem/files/prosjekter/BIM/
SB-BIMmanual1-1mVedl.pdf (Accessed: 2009-06-30)

Syvertsen, .G., 2009. BIM - The Building Information Mess:
Past, present and future Department of Structural Engi-
neering, Norwegian University of Science and Technol-
ogy Paper submitted to IT-Con, http://www.itcon.org/

Tarski, A. 1935. The concept of truth in formalized lan-
guages, Logic, Semantics and Metamathematics, Oxford
University Press, Oxford (1956), 1935, JH Woodger
(trans.); First published as ‘Der Wahrheitsbegriff in Den
Formaliserten Sprachen’, Studia Philosophica I.

Tarski, A. 1944 The Semantic Conception of Truth and the
Foundations of Semantics, University of California,
Berkeley. Published in Philosophy and Phenomenologi-
cal Research 4 (1944). http://www.jfsowa.com/
logic/tarski.htm (Accessed 2009-06-30)

Treldal, N. 2008. Integrated Data and Process Control Dur-
ing BIM Design. Master Thesis. Department of Civil En-
gineering, Technical University of Denmark

Wikforss, Ö. (2003). Bygnadens informasjonsteknologi: så
används och utveklas IT ibyggandet. Svensk byggtjänst.

Wix, J., Nisbet, N. and Liebich, T. 2008. Using Constraints
to Validate and Using Constraints to Validate and Check
Building Information Models 7th European Conference
on Product and Process Modeling (ECPPM) Sophia An-
tipolis. 10.-12 Sept. 2008.

