
Proceedings of the CIB W78 2010: 27th International Conference –Cairo, Egypt, 16-18 November

ENGINEERING SEMANTICS OF MODEL VIEWS FOR BUILDING
INFORMATION MODEL EXCHANGES USING IFC

Manu Venugopal, PhD Candidate ,
Charles Eastman, Professor,

manu.menon@gatech.edu
charles.eastman@coa.gatech.edu

Digital Building Laboratory, Georgia Institute of Technology, Atlanta, Georgia, USA
Rafael Sacks, Associate Professor, cvsacks@tx.technion.ac.il
Technion-Israel Institute of Technology, Haifa, ISRAEL
Ivan Panushev, Research Scientist, ivan.panushev@gatech.edu
Vahideh Aram, PhD Candidate, shiva_aram@gatech.edu
Digital Building Laboratory, Georgia Institute of Technology, Atlanta, Georgia, USA

ABSTRACT
The data schema of the Industry Foundation Classes (IFC) is generic, designed to support the full range of model
exchanges needed in the construction industry. For any given set of use cases for a sub-domain of building
construction, a set of model view definitions (MVD) is required to specify exactly what information should be
exchanged, and in what form and structure the IFC entities are to be used. A spectrum of possibilities is explored,
using examples from concrete construction in general and precast concrete construction in particular. Different
applications use different meanings or semantics and the semantic meaning using IFC constructs is discussed in
detail, for issues dealing with typing, instances, relationships, and rules etc. Based on this review, we conclude
that although the IFC product model schema is richly expressive, it lacks formal definition of its concepts. Thus in
preparing a set of MVDs, information modelers must determine the appropriate level of meaning to require and
they must define the typing structure to be used. In this context the paper also discusses the topics of human
cognition versus software intelligence and the legal implications of MVDs. To achieve standardized and re-usable
model views, further research toward a modular and logical framework based on formal specification of IFC
concepts is recommended.

Keywords: Industry Foundation Classes (IFC), Model View Definitions (MVD), National BIM Standard
(NBIMS), Product Modeling, Process Modeling

1. INTRODUCTION
BIM tools serving the AEC-FM industry cover various domains and have different internal data model
representation to suit each domain, making data exchange possible by hard-coding translation rules. This method
is costly to implement and maintain on an individual system-to-system basis. In the realm of integrated project
delivery (IPD), rich and varied tools are needed to satisfy the requirements in architectural and structural design,
structural analysis, space planning and energy analysis, 4D simulations and work task allocations etc. So, how can
a coherent information model of the building product be compiled?
 The Industry Foundation Classes (IFC) schema is widely recognized as the common data exchange format for
interoperability within the AEC industry (Eastman et al. 2008). IFC is a rich product modeling schema, but highly
redundant, offering different ways to define objects, relations and attributes. Thus, data exchanges are not at an
acceptable confidence level due to inaccuracies in exported and imported data, posing a barrier to the advance of
BIM (Eastman et al. 2010b; Olofsson et al. 2008).

mailto:charles.eastman@coa.gatech.edu�
mailto:cvsacks@tx.technion.ac.ils�
mailto:ivan.panushev@gatech.edu�
mailto:shiva_aram@gatech.edu�

The National BIM Standard™ initiative (NBIMS 2007) proposes facilitating information exchanges through
Model View Definitions (MVD) (Hietanen 2006). A model view is a subset of the entire schema, which satisfies
the requirements for a particular model exchange in the industry. This methodology defines the appropriate
information entities from a schema for a particular use-case. The differences between the model schemas,
designed to store building models for BIM applications and the model schema of exchange models, arise from the
different functions they support. The authors’ experience in developing Precast BIM standard (Eastman et al.
2010a), which is one of the early NBIMS, has given insights into the advantages of the MVD approach and
enabled us to identify areas that require more attention. The following sections introduce the idea of MVD and
analyze the issues related to the semantics of IFC in developing MVDs. Studies on data exchanges, by reducing or
simplifying the information, show that without well defined model views, the current approaches are vulnerable to
errors, omissions, contradictions and misrepresentations (Bazjanac and Kiviniemi 2007). The results of the
exchange scenarios between BIM applications have been shown to contain information loss or distortions (Pazlar
and Turk 2008). Most of these problems can be related to the lack of semantic uniformity in the way BIM tools
map their internal objects to IFC entities and properties. For example, there has been no standard procedure in
which a precast architectural facade is modeled and mapped to and from the IFC schema (Jeong et al. 2009).
Performance studies of BIM data bases, to create partial models and run queries, show a strong need for both
identifying model views for specific exchanges, as well as for specifying the exchange protocols in a stricter
manner (Nour 2009; Sacks et al. 2010). The research presented in this paper analyzes the need for a more formal
definition of IFC concepts.

2. MODEL VIEWS
Integrated project delivery calls for building information modeling data to be exchanged between various actors.
A Use-Case defines the information exchanges between any two actors in a project aimed at achieving a specific
goal, within a specified phase of a project's lifecycle. These information exchanges are defined as Model
Exchanges. Product model schemas such as IFC are rich, but redundant. In order to build effective exchanges, it is
imperative to define relevant subsets of the schema that are appropriate for each exchange. These subsets allow
extraction of ‘model views', which are akin to database views. Therefore, Model Views can be defined as virtual,
specialized and structured subsets of data compiled dynamically from databases. For example, building
information is to be exchanged between an architect and an engineer during schematic design. This is defined as
the 'use-case'. The content of the information exchanges for each use case are termed Exchange Requirements
(ER). The model view for the use-case defines the minimum useful subset of the objects from the architect's
model, and the business rules governing their content, that should be exchanged between architectural design
applications and structural design applications. The most obvious requirement of this exchange model view is the
geometry. This is created by the architect and is used either as a reference or translated into native objects in
structural design applications. It should be possible to identify and relate objects in both Architectural as well as
Structural models.
 The first step in defining such exchange requirements is collection and documentation of requirements in the
form of an Information Delivery Manual (IDM), prepared in close consultation with industry experts. The next
step involves conceptualizing these requirements into reusable modules of information called Concepts. For
example, in the case of precast concrete, the information categories to be exchanged can be reinforcement
elements, joints, plant and field applied connections and slabs, etc. The Concepts are meant to be generic, i.e. they
are not specific to any product model schema. The third step is to bind them in terms of a schema, for example
IFC 2x3. This can be done by defining their implementation in terms of IFC entities and relationships. The
concepts and their bindings can be aggregated and published as Model Views. Software application export and
import functions are implemented for each exchange by using the Concept bindings as a specification. If software
companies implement their internal mappings from their own data model to the exchange modeling language,
high levels of re-use are possible at the translator writing level. These functions are then tested against the model
views to validate and certify them. The same procedural methodology is followed for other exchanges as well. For
example, we would use the same methodology for a model view for exchange between structural design and
structural analysis, or one for structural design to precast detailing, etc.

The model view approach has some drawbacks as well. For example, the development of an IDM is based on
industry knowledge and human expertise. Moreover, the translation from IDM to MVD is manual and tends to be
error prone. This brings to the forefront the need for a more logical framework to specify model views. The
number of research and industry-based initiatives to develop model views in different areas underlines this need.
This prompted the authors to collaborate with the development of IFC Solutions Factory, which is a web-based
repository of such IFC concepts and model view development research that is being pursued in different parts of
the world. Table 1 tabulates some of this research and their respective target model exchanges (Blis-Project 2010).
A number of these areas have overlapping information, however, lack of strict definitions makes it impossible to
re-use existing concepts, adding to the overhead for software developers. (for example, precast and cast-in-place
concrete have different sets of model view definitions, but the reinforcement requirement is largely the same, and
should share common concepts). Moreover, IFC is an extensible data schema, where new extensions are proposed
and accepted whenever new business requirements arise. It is typical for a gap-analysis to be performed and new
extensions to be proposed during the development of model views. There is criticism that some of the extensions
are done in an ad-hoc manner (Kiviniemi 2007). This claim is in fact justified by the number of IFC entities that
are introduced and then deprecated, while moving from one version to another of IFC.

Table 1: A list of current model view development initiatives in progress using IFC (Blis-Project 2010)
http://www.blis-project.org/IAI-MVD/.

1.1 Exchange Model 1.2 Organization
Architectural design to circulation/security/analysis US General Services Administration
Architectural design to landscape design CRC for construction innovation
Architectural design to quantity take-off – level 1,2,3 Virtual Building Laboratory; German Speaking Ch.
Architectural design to spatial program validation US General Services Administration
Architectural design to struct. design and to structural analysis Virtual Building Laboratory @ TUT
Architectural design to thermal insulation Virtual Building Laboratory @ TUT
Architectural programming to architectural design BuildingSmart International
Basic handover to facility management German Speaking Chapter
Concept design BIM 2010 US General Services Administration
Design to code compliance checking International Code Council
Design to energy performance analysis Building Smart Alliance, North America
Design to quantity take-off Building Smart Alliance, North America
Extended coordination view IAI Implementers Support Group
Extensibility Virtual Building Laboratory @ TUT
Indoor climate simulation to HVAC design Helsinki University of Technology – HVAC Lab
Landscape design to road design CRC for construction innovation
Precast Concrete Exchanges Precast Concrete Institute
Road design to landscape design CRC for construction innovation
Space requirements and targets to thermal insulation Helsinki University of Technology – HVAC Lab
Structural design to structural detailing Applied Technology Council

3. EMBEDDING SEMANTIC MEANING IN MODEL EXCHANGES
In compiling an MVD for exchange of product model data between various BIM application tools, one must
determine to what extent engineering, fabrication and production semantics will be embedded in the exchange
model. At one end of the spectrum, an exchange model can carry only the basic solid geometry and material data
of the building model exchanged. In this case, for any use beyond a simple geometry clash check, importing
software would need to interpret the geometry and compile the meaning using internal representations of the
objects received in terms of its own native objects. The export routines at this level are simple and the exchanges
are generic.
 At the other end of the spectrum, an exchange file can be structured to represent piece-type aggregations or
hierarchies that define design intent, procurement groupings, production methods and phasing, and other pertinent
information about the building and its parts. In this case, the importing software can generate native objects in its
own schema with minimum effort, based upon predefined libraries of profiles, catalogue pieces, surface finishes,
and materials and do not require explicit geometry or other data in every exchange. The export routines at this
level must be carefully tailored for each case, the reason being, the information must be structured in a way
suitable for the importing applications in each case. Different use cases require different information structures.

For example, an architect might group a set of precast façade panels according to the patterns to be fabricated on
their surfaces, manipulating the pattern as a family; an engineer might group them according to their weights and
the resulting connections to the supporting structure; a fabricator might group them according to fabrication and
delivery dates.
 In preparing a set of MVDs, information modelers must determine the appropriate level of meaning and the
typing structure. If the structure is too simple, the exchanges will only have value for importing software that is
able to apply some level of expert knowledge to interpret the information. If it is too rigid, then it will only be
appropriate for a narrow range of use cases. This may lead to a requirement of large number of model view
definitions, which also implies that software companies will need to prepare multiple export - import routines.

3.1 Type casting and inheritance
The lower part of Figure 1 (below the axis) identifies the spectrum of possibilities involved when defining a
model view in terms of exchange semantics. The first dimension of the range of possibilities along the spectrum is
the question of the degree of typing that can be required in a model view definition, expressed as by the depth or
breadth of hierarchical classification and aggregation to be used. It is possible to layer a classification schema,
either strictly hierarchically, with each instance object belonging to just one type grouping, or in a distributed
manner, where each instance inherits properties from multiple type objects. The range goes from independent
instances (on the left), through weak typing through relationships between type and instance objects at run-time,
to deeper and stricter inheritance trees without multiple-inheritance on the right.

Figure 1: Spectrum of possibilities in defining model views

For example, consider the typing structure to be used for reinforcement or precast pieces. The concept structure
for rebar can be defined in multiple ways. If the production and assembly hierarchy is relied upon, an assembly
structure of rebar pieces, by material diameters, strength, and coating can be defined as a rebar type (Figure 2:
case 1). Additionally, by using the bending patterns of ACI or other parametric code with length, a bent piece can
be defined (Figure 2: case 2). Similarly, rebar serving the same function in the same piece can be grouped in an
'assembly in one direction', to make a pattern; these may be iterated to and aggregated in turn to collect multiple
patterns into a cage, producing a 'rebar cage' (Figure 2: case 3). A cage can then be assigned to an instance of a
piece, a column or beam mark. At present, the issue of patterns or arrays of multiple instances of the same entity
has not been clearly defined in IFC. As result, the pattern must be configured as an assembly, with the pattern
parameters being implicit.
 The concepts of piece designs, piece marks, piece types, standard cross sections, shared geometry, etc. are
not clearly defined in IFC. For example, what is a piece “type”? This can be considered a drafting block, or
turning an instance into a block (as can be done in Autocad) in order to both group it in terms of making it a class
and placing instances of it. In the BIM world, the issues and objectives are different. For example, the approach
may require making a column, then making instances of the column, or a window style. However, just as often,
we are interested in building assemblies and assemblies of assemblies, all at the type level. It should be possible to
reuse these levels in other assemblies (types), and also map them to instance locations. This capability is missing
in IFC, although it is possible to design assemblies in most BIM tools in this same manner. Thus, a “type” in IFC
should be an object class that cannot have instances, but can only be used to define other types or instances. Only
instances are counted. The issue could be resolved if it were possible to obtain multiple levels of this type.

Figure 2: Different cases of reinforcing element aggregation, which can be used for type-instancing

However, the current type-instance distinction in IFC seems the result of the view that parts are delivered to the
site and then erected. Hence, we have one level of product “type” and the instances. With more and more
construction involving off-site assembly, we need to be able to depict multiple levels of assembly. The issue is the
choice of using multiple levels while building typing/instancing structures, as well as relying on the software to
correctly interpret this data.
 One possibility is to use a ‘flat’ approach where everything in an exchange file is provided explicitly (i.e. an
expression of the physical reality with little or no functional or behavioural interpretation). In this approach,
typing is unimportant, because the receiving application or operator is assumed to be capable of interpreting what
is exchanged for its own purposes. Tekla’s approach to IFC import, in which all objects in the IFC file become
reference objects in the BIM file rather than native objects, expresses this. In this approach, it is the operator who
interprets what is imported and promoted to the functional status of a native Tekla object. The grouping does not
matter if the receiving data is not edited. The ‘flat’ approach seems to guide the IFC core group in hitherto
refraining from providing arrays (Nisbet and Richter 2007).
 Another approach is to establish a hierarchical structure that is designed to meet the needs of a particular
exchange between two specific software tools. In this way the rules are made explicit, and the typing aggregations
would need to be different according to the specific needs of each specific exchange. This seems difficult in IFCs
due to the need for more specific entities for the groupings, with more levels than simply a ‘physical entity’ (e.g.
‘IfcWindow’) and a ‘physical entity type’ (‘IfcWindowType’). This approach also implies that multiple exchange
format definitions will be needed, giving rise to the need for multiple export and import functions.
 A third approach considers using a ‘multiple-inheritance’ type approach, where an instance obtains its
defining features from multiple ‘type’ instances, rather than from a 1:n style hierarchy. In this way a rebar
instance may have a typical shape, a typical material, and a typical diameter, each of which may be inherited by
other rebars as needed. One incentive for typing in this case is economy of file size, and this is being done in most
IFC files by most export routines. A more important incentive is that it can aid interpretation on the receiving end.
If the receiving software does ‘understand’ rebar shape types and uses them, then if the instance-type relationship
between rebar instances and IfcShapes is mandated, where shapes can have names, then importing will be easier
than if it relied on the importing software to scan and group the shapes itself. Figure 3 (a-d) illustrates the
reinforcement and tendon pattern definitions. An added benefit is that this approach is also flexible, making it
possible to represent multiple dimensions of typing in a single export model. The IFC has great flexibility to
support multiple representations of the third type. This is due at least in part to the weak typing (weak typing in
the object-oriented programming sense, not typing in the sense we have used it above) that is characteristic of the
IFC schema. IFC does not currently support multiple inheritance.

 a) Individual bars b) pattern of bars c) a cage (multiple patterns) d) cages in a piece

Figure 3: Reinforcement and tendon pattern definitions

3.2 Geometry
Exchanging geometry using IFC constructs is possible in different solid modeling forms. Some of these forms
include boundary representations, extrusions and CSG. Consider as an example manifold solid B-rep. It can again
be of two different types – a faceted B-rep or an advanced B-rep. The construct for representing a face in
advanced B-rep can be free-form geometry including NURBS, or B-splines etc. Another form of representation is
by defining entities by procedural sweeping action on a planar bounded surface. This is called the Swept-Area
solid and in special cases, such as rebar a circular disk can be swept along a directrix. Usually the swept area is
given either by profile definitions and position in space. The other option, namely CSG, is to perform Boolean
operations on simple shapes to obtain complex shapes. CSG combines geometric, solid models based on B-rep or
Swept Area or Disk or Half-Space and CSG primitives, and structural information in the form of a Tree structure.
All these constructs can be used in different combinations to represent a parametric shape. However, in the case of
round trip exchanges or two one-way exchanges, the receiving application should be able to logically interpret the
design intent and the original shape composition; otherwise the original information is lost. For example, in order
to parametrically represent a precast Double-Tee, there is a need to use parametric profile definitions. Figure 4
shows an example of some of the parameters that might be exchanged. Exchanging only the simple geometry is
not sufficient if one needs to perform more than just clash detection or volume computation. Thus, when data is
exchanged between applications, a range of additional semantics that help fully describe the objects in that
exchange is required. Some of the benefits include semantically meaningful and useful information and smaller
IFC exchange file size. Different applications can rebuild these semantics at an appropriate level of internal detail,
without necessarily replicating all of the finer details. However, parameterized exchanges of this kind require that
both the exporting and importing applications have explicit knowledge of the shapes exchanged. Some of these
parametric shapes, such as the Double-Tee precast profile, are specific to relatively narrow professional domains,
and cannot be taken for granted.

Figure 4: Precast concrete – double tee parametric profile definition.

(http://dcom.arch.gatech.edu/pcibim/documents/AppendixB-2.x4.pdf)

The IFC Technical Committee has wisely made custom parametric profiles optional in Release 2x4, so that
“exotic” profiles could be passed without their specialized parameterization, while the specialty users can use the
parameters to control geometry. The downside implication is that a Double-Tee with arbitrary profile can be
edited into a form not allowed with the fully parameterized profile.

3.3 Relations and Rules
The IFC schema does not determine the behavior of entities within applications or apply parametric constraints or
fix behavior, such as cleaning up wall corners, etc; this is left to the internal logic of each application. The
condition of rebar and other embeds within concrete elements is similarly not dealt with in any way that
determines whether their volumes should be subtracted or not from the host element. For example, the
relationship between an IfcBeam, say, and an IfcReinforcingBar is implemented using IfcRelAggregates. The
simplest approach will be to accept that this is satisfactory, and to implement whether or not the volume of the
rebar should be subtracted from the volume of the concrete to the applications that will manipulate the data. As
long as the basic condition of semantic identification of the parts is met, (i.e. the rebar is identified and recognized
as a rebar) then each application can decide whether to subtract volume or not according to the task at hand and
the degree of accuracy required, for both soft and hard clash checking. Moreover, in certain cases it is necessary
for a particular assembly to have an identity, separate from the aggregation of its components. This is justified in
the case of cast-in-place concrete, which has connected volumes as a result of overlapping concrete volumes
(Barak et al. 2009), and also when it comes to precast modules like prison cells, sanitary blocks, staircase sections
etc. The geometry of these assemblies cannot be simply expressed as an aggregation of other object types.
However, introducing new entity types, which is the case with IFC in the past, is only going to result in an
explosion of element types. A more careful analysis of the semantic meaning of IfcRelAggregates entity is
required to solve this. Similarly, the placeholders for attributes or properties for objects are not strictly defined
within IFC. For example, if a receiving application needs to discriminate between precast pieces and cast-in-place,
rules need to be written to check placeholders such as name, description, object type or tag. However, there are no
strict guidelines for embedding these semantics in a formal manner. Moreover, when building models are
modified, there needs to be a mechanism to relate and track the piece information. IFC, provides this functionality
through the GUID (Liebich et al. 2006), which is a unique identifier throughout the software world. However,
when data us transferred back and forth by applications having differing native conventions, preserving the
GUIDs becomes an ordeal and is not yet widely implemented. Such tracking is important, for example, in the case
of a precast concrete piece, design is send from the engineer to the detailer (structural coordination model) and the
fabricator does the piece detailing and send it back to the engineer for structural review (fabrication model). At a
different level, the use of GUID and Owner History, as defined in IFC, creates overhead to the software models.
For example, GUID is a property of IfcRoot and all building elements inherits this property, including entities like
IfcReinforcingElement. This forces each instance of rebar to have a GUID rather than assigning a group of
reinforcing as an element and assigning a GUID. Implementing a multiple inheritance structure for components
such as IfcReinforcingElement can potentially solve the overkill of GUID requirement.

4. HUMAN COGNITION AND MACHINE READABILITY OF MODEL DEFINITIONS
How much ‘intent’ or structure is built into the exchanges is a function of how similar or different the worldview
of a building is between construction software applications, and ultimately between construction professionals. If
models are classified based on cognition (human and software), it can be assumed that a person's mental model of
a building will be a multi-faceted design with alternatives and varying levels of detail. At a more professional
level this can be classified as architect's model, structural engineer's model etc. At the software level the
professional models are visualized using different software tools. Thus, for the architectural model there will be
doors and windows, whereas a structural model has beams and columns and the behavior and function of those
forms are tailored according to the professional view embedded in the software.
 This is relevant because the different models (mental and software) also have different understandings of the
notions of ‘type’, ‘instance’ and ‘assembly’. In each persons’ mind (and in each of the software tools' embedded
functionality) there are different ways of aggregating and typing individual building objects such as reinforcing

bars. Human cognition is flexible and agile, so a person can think of a rebar cage as a type and it being instanced
in multiple columns at one instant, and then in the next instant, for a different function or manipulation, the person
can think of the fabrication of a particular rebar shape + material + diameter combination being fabricated as a
type but applied in multiple different cages, for different columns and even beams. Figure 2 shows three different
cases of reinforcing element aggregation and each case can be used as a type. Software is generally less agile, and
so the typing is fixed and embedded. This concept is acceptable, with each person working with their mental
model, and each software tool with its data model, until people need to communicate, or software tools need to
‘interoperate’. When people communicate design to other people, they can use type-instance relationships to make
the communication quicker and more efficient, as long as they can rely on the receiver to correctly interpret the
manner in which they are using the relationship at any given moment (e.g. ‘there are sixteen identical columns…
each is 3m tall and has 12 numbers of 8mm diameter square shaped rebar links…’). This works only if the
implicit rules for interpreting and applying the typing and instancing are clear to all by convention or explicitly
explained. (e.g. ‘all sixteen are identical, except for the fact that the last two are only 2m tall’). Similarly when
BIM software tools need to communicate, there is a need to know in advance the internal rules for typing and
instancing for the two applications to interoperate. Such semantics need to be specified strictly in the MVD.
 In the case of custom instances, simple shapes are constructed with shape operators to form complex shapes
and then transformed to arrive at the final instance. Now, if such an instance is exchanged, then the receiving
application can only interpret the geometry as a boundary representation with limited processing. However, if
there is a need to make edits to geometry then, the receiving application needs to re-create all the procedural
information, otherwise that information is lost (Sacks et al. 2004). This problem is known to be unsolvable
(Hoffmann 1993). This means exchanges must carry additional information so the MVD needs to take into
consideration the requirement of the receiving application to decide on the form of exchanged geometric data.

5. LEVEL OF DETAIL AND LEGAL/CONTRACTUAL IMPLICATIONS OF AN MVD
The MVD approach of specifying model exchanges provides extensive definitions for each information item.
Adding a model progression metric to this MVD, can improve the applicability to legal/contractual terms, thereby
making sure the deliverable at each stage between partners are clearly specified. This can be extended by adding a
level of detail (LoD) metric (Bedrick 2008) as explained below. This paper introduces the problem of MVDs and
Level of Detail, but further analysis is out of scope at this point.
 MVDs need to satisfy particular level of detail requirement for each phase of the project. These provide a
guideline for commercial/contractual terms between parties to construction projects where BIM is used. LoD has
three components; 1) LoD definitions, 2) Project phases, and 3) Information items or objects and attributes. For
example, Table 2 provides an illustration of LoD requirements for concept model exchanges in the precast
industry for a particular project phase. Table 3 shows the corresponding information items and Table 4 carries the
LoD definitions. LoD can be a guide to MVD developers in defining the details of the exchanges. Moreover, in
contracting, defining the LoD and the exchanges will support partial definition of milestones. However, LOD
requires a level of checking not supported by a MVD. For example, suppose that all columns are required at a
given LOD to include reinforcing. Testing this requires that both IfcColumn and IfcReinforcingElement entities
are in the exchange. But this is not sufficient. Suppose that all columns in an exchange carried rebar, except for
two columns. The IfcRelAggregate relation between IfcColumn and IfcReinforcingElement must actually be
checked on an instance-by-instance level.

Table 2: Level of detail example for precast architectural concept model exchanges –Project phase
Project Stage 31-20-10-00 Preliminary Project Description
Exchange Disciplines (33-21-11-00) Architecture, (33-21-31-00) Engineering, (33-25 41-11-11) Building Product Manufacturing

Description

Concept model developed by architect consists of layout of precast pieces into simple assemblies, without
surface or structural detailing. Building model includes massing models, structural and other grid controls..
Fabricator may revise panelization & joining conditions. With precaster as lead, these models are likely to be
more developed than those in other business cases. Exchanges supported are from architect to engineer
and fabricator, and optionally fabricator return.

Related Exchange Models A_EM.1, A_EM.2, S_EM.1, P_EM.1, P_EM.2

Table 3: Level of detail example for precast concept model exchanges – Information items and Attributes
 Included piece types Type of geometry Attributes Relations LoD

Site arrangement and building origins (opt.) 2D Referenceable Spatial hierarchy 200
Spatial hierarchy and grids: grids for
facades Referenceable Spatial hierarchy 200

Non-precast struc. assemblies: steel
and CIP frames, slabs, foundations Referenceable Material type Spatial hierarchy 100

Secondary steel & RC members Referenceable Material type Spatial hierarchy 100

Precast façade/wall assemblies Referenceable Material type Spatial hierarchy, Assembly relations 200

Precast Structural assemblies Referenceable Material type Spatial hierarchy Assembly relations 100
Precast Load bearing pieces,
foundations optional Referenceable Material type

Precast properties Spatial hierarchy 100

Precast Non-load bearing pieces Referenceable Material type Spatial hierarchy 100

Other building parts (optional) Referenceable Ownership, status,
system type Spatial hierarchy 100

Modules: stairs elevator shafts Referenceable Material 100

Table 4: Level of detail example for precast architectural concept model exchanges- LoD Definitions
Level of Detail Definitions Explanation

100. Conceptual Non-geometric data or line work, areas, volumes zones etc.
200. Approx geometry Generic elements shown in three dimensions - maximum size, -purpose
300. Precise geometry Specific elements. Confirmed 3D Object Geometry -dimensions -capacities -connections
400. Fabrication Shop drawing/ fabrication -purchase -manufacture -install -specified
500. As-built As-built - actual

6. CONCLUSION
The issue of semantic robustness of model exchanges using IFC, illustrated by the varied examples in this paper,
needs to be seriously considered for advancing interoperability within AEC industry. The discussions provide
insights to the conundrum of embedding semantic meaning in exchange data, with specific emphasis on the type-
instance structure, geometry, relationships, and rules. Based on the research conducted by the authors’ in
developing the Precast National BIM Standard and further analysis of the past and present work in this area, we
present a set of recommendations / conclusions.
• The MVD development process needs to be transitioned from the current ad-hoc manner to a more rigorous

framework and/or methodology.
• The semantic meaning of IFC concepts needs to be defined in a rigorous and formal manner with strict

guidelines. This can help in achieving a uniform mapping to and from internal objects of BIM tools and IFC.
• There should be flexibility in defining the type-instance structure based on the context and nature of an

application. A multiple-inheritance structure can be the long-term solution for achieving this flexibility,
however further research is needed to study the upward compatibility of the schema.

• Editable geometry is still not achieved in model exchanges; however, the use of parametric profiles, as shown
in Figure 4, can provide this feature to a certain extent.

• MVDs need to be closely associated with Level of Detail, thereby adding value in terms of a binding,
contractual or legal document.

 Some of the criteria for a framework to improve the robustness of model exchanges using IFC can be as
follows. The expressiveness and rigor, where MVD aspects can be represented fully and in a consistent manner is
important. Model views represent different levels of detail, hence the new methodology should contribute to a
better understanding of model views by providing a concise and object oriented view of the exchange. It should
be possible to decompose the view into several modular objects (Concepts) that are more manageable and
testable. Moreover, traceability is a very important feature in the development process. A more effective
translation and transparency of the user needs (Exchange Requirements) into the design of MVDs is required.
Development time and costs can be reduced by avoiding unnecessary iterations and redundancy of IFC concepts.
A logical framework on the basis of well-defined and unit tested IFC concepts, thereby following a modular

approach of building concept structures, can be the future direction for creating MVDs in a standardized, and re-
usable manner, cutting across all domains and providing better interoperability.

ACKNOWLEDGMENTS
The work presented here was funded by the National Institute of Standards and Technology, grant number
60NANB9D9152. All information presented is that of the authors alone.

REFERENCES
Barak, R., Y. Jeong, R. Sacks, and C. M. Eastman (2009). "Unique Requirements of Building Information

Modeling for Cast-in-Place Reinforced Concrete." Journal of Computing in Civil Engineering

Bazjanac, V. and A. Kiviniemi (2007). Reduction, simplification, translation and interpretation in the exchange of
model data. CIB W, 163-168.

 23(2): 64-
74.

Bedrick, J. (2008). Model Progression Specification for BIM. AECbytes.
Blis-Project (2010). IFC Solutions Factory: Model View Definitions Site. http://www.blis-project.org/IAI-MVD/

(Accessed 06/10/10)
Eastman, C. M., R. Sacks, I. Panushev, M. Venugopal, and V. Aram (2010a) " Precast Concrete BIM Standard

Documents:Model View Definitions for Precast Concrete." 1.
http://dcom.arch.gatech.edu/pcibim/documents/Precast_MVDs_v2.1_Volume_I.pdf (Accessed 06/10/10)

Eastman, C. M., P. Teicholz, R. Sacks, and K.Liston (2008). BIM Handbook: A guide to building information
modeling for owners, managers, designers, engineers, and contractors, John Wiley & Sons Inc.

Eastman, C. M., Y. S. Jeong, R. Sacks, and I. Kaner (2010b). "Exchange model and exchange object concepts for
implementation of national BIM standards." Journal of Computing in Civil Engineering

Hietanen, J. (2006). Information delivery Manual Guide to Components and Development Methods,
BuildingSMART, Norway, 28 March, 2006.

 24(1): 25-34.

Hoffmann, C. (1993). "On the semantics of generative geometry representations." ASME DES ENG DIV PUBL
DE., ASME, NEW YORK, NY(USA), 1993 65: 411-419.

Jeong, Y. S., C. M. Eastman, R. Sacks, and I. Kaner (2009). "Benchmark tests for BIM data exchanges of precast
concrete." Automation in Construction

Kiviniemi, A. (2007). Ten Years of IFC Development- Why are we not yet there? CIB-W78 Keynote, Montreal.
 18(4): 469-484.

Liebich, T., Y. Adachi, J. Forester, J. Hyvarinen, K. Karstila, and J. Wix (2006). Industry Foundation Classes
IFC2x3. International Alliance for Interoperability.

NBIMS (2007) "National Building Information Modeling Standard, Version 1.0—Part 1 Overview, Principles,
and Methodologies."

Nisbet, N. and S. Richter (2007). Repeated Instances and Placement Sets, International Alliance for
Interoperability. http://www.iai-tech.org/jira (Accessed on 06/10/10)

Nour, M. (2009) "A comparative analysis of the performance of different (BIM/IFC) exchange formats." EWork
and EBusiness in Architecture, Engineering and Construction.

Olofsson, T., G. Lee, and C. M. Eastman (2008). "Editorial - Case studies of BIM in use." ITcon

Pazlar, T. and Ž. Turk (2008). "INTEROPERABILITY IN PRACTICE: GEOMETRIC DATA EXCHANGE
USING THE IFC STANDARD."

 13(Special Issue
Case Studies of BIM in use): 244-245.

ITcon
Sacks, R., C. M. Eastman, and G.Lee (2004). "Parametric 3D Modeling in Building Construction with Examples

from Precast Concrete."

 13: 362.

Automation in Construction
Sacks, R., I. Kaner, C. M. Eastman, and Y. S. Jeong (2010). "The Rosewood experiment -- Building information

modeling and interoperability for architectural precast facades."

 13: 291-312.

Automation in Construction

 19(4): 419-
432.

	ABSTRACT
	1. INTRODUCTION
	2. model views
	3. Embedding semantic meaning in model exchanges
	4. Human cognition and machine readability of model definitions
	5. Level of detail and legal/contractual implications of an MVD
	6. Conclusion
	ACKNOWLEDGMENTS
	references

