
240

SIGRADI 2010 / Disrupción, modelación y construcción: Diálogos cambiantes

Real-time Minor Deformations that Result from Collisions
Using Bump and Normal Mapping

Hassán Lombera Rodríguez.
University of Computer Science, Cuba.
 hlombera@uci.cu

Andy Trujillo Rivero
University of Computer Science, Cuba.
 arivero@uci.cu

ABSTRACT

This paper presents a method for simulating minor deformations that result from collisions on objects’ surfaces. The method alters only bump
maps and leaves mesh geometry unchanged; it is suited to real-time applications where the primary concern is computational efficiency. The
paper provides a representative model for deformable objects. Texture mapping and computer graphics techniques based on lighting are
referenced as well. Finally, results are provided, along with the most noteworthy findings obtained with the use of this method.

KEYWORDS: bump mapping, normal mapping, minor deformations, real-time.

Deformable object simulations can considerably increase the
acceptance of many applications in computer graphics, but
they have traditionally been very time consuming and difficult to
execute in real-time. Therefore, programmers have placed their
attention in the GPU for optimizing the scene rendering process.

On the other hand, as long as a simulation looks realistic, sim-
plifications are deemed acceptable. Hence, this paper uses a
simplified deformation model based on the stress-strain curve
for simulating minor deformations that result from collisions
on objects’ surfaces. It is important to note that this paper only
considers permanent deformations, which are represented by
maintaining the geometry unchanged. To this end, techniques
like bump and normal mapping are applied.

Related Work

Point-based representations for both the surface and volume
of deformable objects have been researched in recent year;
since they do not store the connectivity explicitly, they can
handle topological changes easier (Keiser, Müller, Heidelberg-
er, Teschner, & Gross, 2004).

For deformable objects Kaufmann proposed a simulation
technique for elastically deforming objects based on the dis-

continuous Galerkin finite element method (Kaufmann, Mar-
tin, Botsch, & Gross, 2008). Teschner discussed various colli-
sion detection approaches that addressed several challenging
problems that complicated the simulation of dynamically de-
formable objects (Teschner, Kimmerle, & Heidelberger, 2005).
In both cases, simulations were performed off-line.

Concerning deformations in applications with real-time inter-
action, predefined mesh-based representations and particles
systems have been merged. The latter has been even pro-
posed for addressing structural engineering problems (Mar-
tini, 2002). Many methods have been proposed in literature,
and arranged according to the level of details of deformations,
in an effort to improve efficiency. Model shape representa-
tions for real-time 3D rendering commonly have three levels
of detail: polygons for macro-structure, bump and normal
maps for meso-structure, and BRDF approximations for micro-
structure. Minor deformations affect meso-structure; here it
is very important to mention a work of Morgan McGuire, who
was the first to achieve minor deformations while leaving ge-
ometry unchanged (McGuire, Wrotek, & Rice, 2005). In addi-
tion, Mosegaard proposed a way of achieving real-time de-
formations of detailed geometry based on mapping and GPU
(Mosegaard & Sørensen, 2005).

241AMBIENTES COLABORATIVOS DE APOYO AL DISEÑO

ENG / POR / ESP

As shown in figure 1 the slope of the curve during the elastic
deformation phase is Young’s elastic modulus E (Fig. 1). The
plastic deformation curve is modeled as a line with a shallow-
er slope, P < E, although materials do exist that have nonlinear
responses (Gere & Goodno, 2008). So, let PDTotal be the to-
tal percent of deformation in response to a stress value, after
some algebra operations figure 1 shows that:

 (1)

The parameters E, Syield and P are material dependent and are
available from online resources. To compute deformations, we
must reconcile the mechanical engineer’s stress (N/m2) model
with the instantaneous impulse (N*s) collision model used for
real-time simulation:

 (2)

Where NC is the collision normal, ε is the coefficient of res-
titution, v is velocity, and m is mass (Guendelman, Bridson,
& Fedkiw, 2003). To work with these two models, we use the
trends of the former but not its actual units and constants. The
elastic deformation and the yield stress are represented as an
impulse threshold Y below which no deformation occurs, and

Deformation Model

In computer graphics, the more accurate a simulation of a de-
formation is the more time consuming it will be. But sometimes
it might be convenient to sacrifice accuracy in favor of plausi-
ble results achieved in a reasonable amount of time. In this pa-
per we will use a simplified deformation model of solid objects
based on the stress-strain curve taken from Crandall’s book,
An Introduction to the Mechanics of Solids, and widely used
for this purpose, see figure 1 (Fig. 1) (Crandall & Lardner, 1999).

a scale factor k that abstracts the term . So,

 (3)

Putting the k factor in equation (3) we get the final governing
equation.

 (4)

Where Jε=1 is the impulse that would be experienced by object
A due to object B if the collision was perfectly elastic. YA is
defined as follows:

 (5)

Physical Simulation

For the physical simulation and collision detection we used
Open Dynamics Engine (ODE) which was really powerful in de-
termining the parameters needed to compute a deformation:
the world space collision location PC, the collision normal NC,
and penetration depth dC. During the collision detection phase
of the simulation we applied the technique proposed to de-
form colliding objects.

PDTotal =
(S-Syield) * (), S > Syield

1 1— - —P E
0, S ≤ Syield

J = -NC

[1+min (εA, εB)] NC (νB-νA)

mA
-1 + mB

-1

1 1— - —P E

PDTotal = (j - Yi) * ()1 1— - —P E

PDTotal = kA max (0, || jε=1 || - YA)

1
1 - εA

YA = - 1

Figure 1. The simplified stress-strain curve used in this paper

Figure 2. a) Inadequate texture parameterization b) recommended texture
parameterization

242

SIGRADI 2010 / Disrupción, modelación y construcción: Diálogos cambiantes

Texture Parameterization

Artists usually use texture memory efficiently by tiling maps or
re-using patches, see figure 2 (Fig. 2a). If such maps are ap-
plied along with the same bump map to the entire surface, we
will end up having several points of the geometry connected
with a unique texel, and during a collision, all of them will be
affected. To ensure good performance of this method, we rec-
ommend a bump map and a texture for each object, see figure
2b (Fig. 2b).

Deforming an Object on Collision

Each object is deformed when the impulse of a collision is be-
yond the threshold defined in equation 5, which assures that
the impact is strong enough to leave a mark. For a deformation
to be plausible, it must reflect the size, shape, and elasticity
of the object that caused it. To approximate this, this method
causes the objects to interpenetrate during collision, and then
measures the shape of the resulting overlap by using the GPU.
The method also scales the depth of the deformation by the
result of the stress-strain model, taking into account the coef-
ficient of restitution of the object being deformed. This paper
follows McGuire’s method, which extended the one proposed
by Akeley with an address map (Akeley & Jermoluk, 1988).

Computing Deformations

The computation of the deformation is executed by using
shaders while rendering the back buffer objects on collision
in serial form. See the steps in figure 3 for the case of a sphere
colliding with a plane (Fig. 3).

Updating the Bump Map

This updating process is accomplished using an address map,
which is built when rendering the two objects to their color
buffers. The color of a pixel is thus the 2D address of the bump
map texel that corresponds to it. The blue channel is always 0.
The following steps are executed with no lighting:

· Clear the frame buffer with the blue color.
· Render the front faces of A (Figure3c) with color = texture

coordinate.
· Read back depth buffer DA and color buffer CA.
· Clear the color buffer and set the depth test to pass when

the new pixel is farther from the camera than the old one.
· Render the back faces of B with color = texture coordinate.
· Read back the depth buffer DB.

Each object has one buffer as an address map, and the other
one for storing the depth of the deformation. The difference
between depth buffers, in this example, stands for the distance
object B penetrates into object A. Since the objects are bump
mapped, the deformation should reflect not only the objects’
geometries, but also the information from those bump maps.
Therefore, a fragment shader is used to for alter the values
that are put into the depth buffers. For each pixel, this shader
uses the corresponding value from the address map to index
the object’s bump map, adjusts the pixel’s depth by the re-
sulting height value, and sets the final depth accordingly. To
alter the depth buffers based on the objects’ bump maps, the
values of the latter must be converted into depth values. This
method only sets the bump map updated version of an object
once the whole process has been repeated for the other one.

Using Normal Mapping

When the bump map has been updated for each object,
in order to add the correct details to shading without using
more polygons, the renderer would need to compute, frame
by frame, appropriate normals by comparing each pixel with
the ones in its vicinity. So, in favor of speed it would be much
better if the normal mapping technique was used, because it
stores the direction of a surface normal by using the three col-
or channels. Therefore, the calculations of the slopes for each
pixel just need to be performed one time or at least when a
deformation occurs. That is why this paper includes this tech-
nique in the approach proposed by McGuire mentioned ear-
lier. As the computation of the normal map can be very time
consuming depending on the image resolution, we use the
same address map technique for its updating process.

Results and Discussion

The method this paper proposes, although it is physically
motivated, provides different results from physically correct

Steps for computing the deformation for object A:

· (a) A plane A and a ball B prior to collision.
· (b) Orthographic camera setup used to compute deforma-

tions on the GPU.
· (c) Front faces of plane A rendered.
· (d) Back faces of ball B rendered where they are deeper

than the previously rendered faces of plane A.
· (e) The resulting deformation on the surface of the plane

after subtracting the calculated depths.

Then, the method retracts the object A by dC along the NC to the
initial point of contact, and repeats the process for object B.

Figure 3. Steps for computing a deformation

243AMBIENTES COLABORATIVOS DE APOYO AL DISEÑO

ENG / POR / ESP

ones. Despite this, results are perfectly suitable for real-time
applications where efficiency and robustness are desired. In
addition, deformations keep the geometry unchanged. The
use of the simplified deformation model allowed plausible
representations of minor deformations on rigid bodies’ surfac-
es. The use of the GPU througout the method also contributed
to increased speed of the process. On the other hand, large-
scale deformations that change an object’s overall structure
cannot be performed by this method, since it does not alter an
object’s mesh. In that case, would be convenient to use a hy-
brid method which combines the one proposed here for minor
deformations with another method; research of that subject is
left for future work. Moreover, the method avoids unnecessary
calculations if collisions do not produce permanent deforma-
tions on object’s surface. The main contribution of this method
is the incorporation of the normal mapping technique in the
one proposed by McGuire. This inclusion reduces the continu-
ous normals calculations after a bump map is updated. The
updating process occurs fully in the CPU, because current GPU
technology allows for texture lookups of up to four textures
within the vertex shader, which is not enough for the purpose
of this method. This method needs five texture lookups for
each rendering pass. For the implementation of the demo,
Graphics Three-Dimensional engine (G3D) was used. See fig-
ure 4 for a snapshot of the created demo (Fig. 4).

The method could also be integrated with the physics engine
ODE, since it has only been used with the simulator proposed
by Guendelman (Guendelman, Bridson, & Fedkiw, 2003).

Regarding the design process one may note that graphic art-
ists dealing with Computer Aided Design software are com-
monly concerned with the way virtual models being developed
react to external physical stimulus, so that they can improve
its design and reduce costs.

These kinds of results are typically obtained by applying com-
plex numerical techniques like the finite element method
(FEM), which is very accurate but also time consuming. How-
ever, for some applications like videogames, precision is not
that important; what is sought is a little bit of realism. Due
to the interactive and real-time nature of these applications,
complex methods like FEM are hard to apply. Here is where our
proposal could be used.

This method could also be included in CAD modeling tools as
an add-in which would allow artists to check how their models
will behave under different stimuli. By adjusting the parame-
ters previously discussed, they could gain an idea of how those
changes could affect the solution. Virtual laboratories can also
use this technique to allow students to experiment real-time
interactions when learning physical sciences.

Conclusions

After the completion of this research we concluded that: the
use of this method guarantees the computation of plausible
deformations and keeps the objects’ meshes unchanged; the
use of the GPU for the deformation computation guarantees
to speed up the calculation process; the addition of the nor-
mal mapping technique to the method proposed by McGuire
avoids the continuous normals calculations while rendering
the scene; the results are widely applicable to real-time ap-
plications where the most important aspect is the generation
of plausible behaviors, rather than the accurate predictions of
exact results; the method can be re-created regardless of the
graphics or physics engines chosen for this purpose.

References

Akeley, K. & Jermoluk, T. (1988). High-performance polygon rendering. Pro-
ceedings of the 15th annual conference on Computer graphics and interactive
techniques, ACM Press, pp. 239-246.

Crandall, S. H. & Lardner, T. J. (1999). An Introduction to the Mechanics of
Solids (2nd ed.). New York: McGraw-Hill.

Gere, J. M. & Goodno, B. J. (2008). Mechanics of Materials. Thomson Engi-
neering.

Guendelman, E., Bridson, R., & Fedkiw, R. (2003). Nonconvex Rigid Bodies
with Stacking. Los Angeles: ACM Trans.

Kaufmann, P., Martin, S., Botsch, M., & Gross, M. (2008). Flexible Simulation of
Deformable Models Using Discontinuous Galerkin FEM. Zurich: Eurographics.

Keiser, R., Müller, M., Heidelberger, B., Teschner, M., & Gross, M. (2004). Con-
tact Handling for Deformable Point-Based Objects. Stanford.

Martini, K. (2002). A Particle-System Approach to Real-Time Non-Linear Anal-
ysis. Virginia: Proceedings of the 7th National Conference on Earthquake Engi-
neering [CD-ROM], Earthquake Engineering Research Institute.

McGuire, M., Wrotek, P., & Rice, A. (2005). Real-Time Collision Deformations
using Graphics. Boston: A K Peters.

Mosegaard, J. & Sørensen, T. S. (2005). Real-time Deformation of Detailed
Geometry Based on Mappings to a Less Detailed Physical Simulation on the
GPU. Proceedings of Eurographics Workshop on Virtual Environments, vol. 11,
pp. 105-111.

Teschner, M., Kimmerle, S., & Heidelberger, B. (2005). Collision Detection for

Deformable Objects. Computer. Graphics Forum, 24, 61-81.

Figure 4. A snapshot of the created demo

	sigradi_2010
	cara1
	prelim
	cap1_ing
	cap1_por
	cap1_esp
	cap2_ing
	cap2_por
	cap2_esp
	cap3_ing
	cap3_por
	cap3_esp
	cap4_ing
	cap4_por
	cap4_esp
	cap5_ing
	cap5_por
	cap5_esp
	cap6_ing
	cap6_por
	cap6_esp
	cap7_ing
	cpa7_por
	cap7_esp
	postersENG
	postersPOR
	postersESP

	cara2

