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ABSTRACT 

A transmission canal loses water through seepage and evaporation. For economy, it should be 

divided into sub-sections and the cross-section for each of the sub-sections must be designed 

separately. This adds cost of transition in between two sub-sections, but the transition cost is 

overcome by reduced cost of the cross-section. Optimal design parameters for transmission 

canal based on the Manning equation are not available yet. This paper presents design 

equations for the least cost transmission canal considering earthwork cost which may vary 

with depth of excavation, cost of lining, and cost of water lost as seepage and evaporation 

from irrigation canals of triangular, rectangular, and trapezoidal shapes. This optimization 

problem is some sort of a dynamic programming, which is complicated due to unknown 

number of subsections i.e. number of unknown constraints. The problem was expressed in 

dimensionless form and then solved numerically. The optimal design equations along with 

the tabulated section shape coefficients provide a convenient method for the optimal design 

of a transmission canal. These optimal design equations and coefficients have been obtained 

by analyzing a very large number of optimal sections resulted from application of 

optimization procedure in the wide application ranges of input variables. The analysis 

consists of conceiving an appropriate functional form and then minimizing errors between the 

optimal values and the computed values from the conceived function with coefficients. Using 

the proposed equations along with the tabulated section shape coefficients, the optimal 

number of subsections and corresponding cost of a transmission canal can be obtained in 

single step computations.  
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INTRODUCTION 

Canals continue to be major conveyance systems for delivering water for irrigation. The 

seepage loss from irrigation canals constitutes a substantial percentage of the usable water 

(Rohwer and Stout 1948). According to the Indian Standard ("Bureau" 1980) the loss of 

water by the seepage from unlined canals in India generally varies from 0.3 to 7.0 m3/s per 

106 m2 of wetted surface. Canals are lined to check the seepage. But canal lining deteriorates 

with time and hence, significant seepage losses continue to occur from a lined canal 
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(Wachyan and Rushton 1987). A transmission canal conveys water from the source to a 

distribution canal. Many a times the area to be irrigated lies very far from the source, hence 

requires long transmission canals e.g. the Rajasthan canal system has the transmission canal 

length of 204 km carrying a discharge about 524 m3/s (Hooja 1993; Kanwar Sain 1967). 

Though, there is no withdrawal from a transmission canal but it loses water through seepage 

and evaporation.  

Since, a transmission canal loses water through seepage and evaporation, it is not 

economical to continue the same section throughout the length of a long transmission canal. 

Instead the transmission canal should be divided into sub-sections or reaches and the cross-

section for each of the sub-sections must be designed separately. This adds cost of transition 

in between two sub-sections, but the transition cost is overcome by reduced cost of the cross-

section. The reduced cross-section not only results into cost saving for earthwork, lining and 

water lost, but also requires less cost in land acquisition, in construction of bridges and cross-

drainage works. Though the author’s team (Chahar 2000, Swamee et al 2002b) proposed 

optimal design equations for transmission canal using general resistance equation based on 

Darcy-Weisbach friction formula and Colebrook formula but such equations based on the 

Manning equation are not available yet. This paper presents design equations for optimal 

transmission canals based on Manning’s equation.  

WATER LOSS FROM A CANAL  

Chahar (2000) and Swamee et al (2002a) expressed the quantity of water loss qw (m
2/s) as 

seepage qs (m
2/s) and evaporation qE (m

2/s) from a unit length of canal as 

ETykFqqq nsEsw +=+=          (1) 

where k = hydraulic conductivity of the porous medium (m/s); Fs = seepage function 

(dimensionless), which is a function of channel geometry and depth to drainage layer below 

the canal; yn = normal depth of flow (m); E = evaporation discharge per unit surface area 

(m/s); and T = width of free surface (m). Simple algebraic equations for the seepage function 

as given by Chahar (2000) and Swamee et al. (2001b) for triangular, rectangular, and 

trapezoidal canal sections underlain by a drainage layer at depth d are 
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bed width (m); and m = side slope (1 horizontal in m vertical). As d → ∞, (2) to (4) becomes 

function of canal geometry only and reduces to the seepage functions for canals passing 

through a homogeneous porous medium of very large depth (Swamee et al 2000b).  

UNIT LENGTH CANAL SECTION COST  

The most general case for the optimal channel design is that which considers cost of 

earthwork per unit length of canal Ce ($/m) that varies with depth of the canal, cost of lining 

per unit length of canal CL ($/m), and capitalized cost of water lost as seepage and 

evaporation per unit length of canal Cw ($/m). The cost of canal per unit length C ($/m) was 

obtained (Chahar 2000; Swamee et al 2000c) as 

TcyFcPcyAcAcCCCC wEnswsLrewLe ++++=++=      (5) 

where ce = cost per unit volume of earthwork at ground level ($/m3); cr = increase in the unit 

excavation cost per unit depth ($/m4); cL = cost per unit surface area of lining ($/m
2); 

rkcc wws /10156.3 7×= ($/m2); rEcc wwE /10156.3 7×= ($/m2); cw = cost per unit volume of 

water ($/m3); r = rate of interest ($/$/year); andy = depth of centroid of excavated area from 

the free water surface (m). 

It can be seen from (5) that for given cost factors ce, cr, cL, cws, and cwE the cost per 

unit length of the canal is a function of the canal geometry and depth of the drainage layer, 

since d appears in the seepage function. As eL cc / , re cc / , ews cc / , and ewE cc /  have length 

dimension, they remain unaffected by the monetary units chosen. These ratios can be 

obtained for various types of linings, soil strata, and climatic condition by using appropriate 

unit rates (Swamee 2000c).  

REQUIREMENTS FOR FLOW IN A CANAL  

A rigid boundary canal is designed for the condition of uniform flow. The most commonly 

used uniform flow formula around the world is the Manning equation (Chow 1973) due to its 

simplicity and acceptable degree of accuracy in most of practical applications. The uniform 

flow rate or discharge Q (m3/s) in a canal by Manning’s equation is  
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where V = mean velocity of uniform flow (m/s); R = hydraulic radius (m), defined as the ratio 

of flow area A (m2) to the flow perimeter P (m); n = Manning’s roughness coefficient; Sf = 

energy slope (dimensionless); and So = bed slope of the canal (dimensionless). For uniform 

flow Sf = So. In the Manning’s formula all the terms except n can be directly measured. The 

roughness coefficient is a parameter representing the integrated effects of the channel cross-

sectional resistance. The selection of a value of n is subjective, based on experience and 

engineering judgement. Chow (1973) lists values of n for different conditions of a canal. 

Since the least cost canal section is designed to sustain uniform flow, (6) provides the 

required condition as an equality constraint function in the design.  

METHODOLOGY 

PROBLEM FORMULATION  

 

Figure 1: Layout of a Transmission Canal 

A transmission canal of length Lc (m) was divided into N subsections of x1, x2, x3, …, xN 

lenghts (m). Hence, N - 1 number of transitions were required in the transmission canal. The 

cost of a transmission canal consists of the cost of subsections and the cost of transitions. 

Letting the cost of each transition CT (monetary units, $) same for all the transitions, and 

assuming canal geometry and depth to the drainage layer remains constant throughout the 

each subsection, the overall cost of the transmission canal Co (monetary units, $) would be 
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Therefore, the problem of the least cost design of a transmission canal became 

Lc 

x1 x2 xi xN 
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where the index i indicates a sub-section. 

 The first constraint (9a) imposes the condition of uniform flow in the each subsection, 

while, the second constraint (9b) satisfies the continuity in discharge from one section to the 

next section, and the third constraint (9c) is obvious. The optimization problem stated by (8) 

and (9a-c) is some sort of a dynamic programming. The problem is complicated due to 

unknown number of subsections N i.e. number of unknown constraints. This optimization 

problem was expressed in dimensionless form and then solved. 

NON-DIMENSIONALISATION 

Assuming So, n, k, and E constant for all the subsections and using a length scale λ (m) as 

( ) 8/3

0SnQii =λ                    (10) 

and 1λλ = ; the following dimensionless parameters were obtained 
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where variables with subscript * denotes corresponding non dimensional parameter. Using 

(11a-p) in (8) and (9a-c), the optimization problem in non-dimensional form reduced to: 

Minimize 
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This dimensionless optimization problem was simplified to an optimization problem with 

one variable N. This was achieved by providing the least cost section for each subsection of 

the transmission canal, and considering the length of the each subsection to be equal. 

LEAST COST SECTION DESIGN EQUATIONS FOR EACH SUBSECTION 

The cost of the each subsection must be minimum to arrive at the least cost transmission 

canal. The least cost canal section for a particular subsection of the transmission canal could 

be obtained from (8), without the transition cost, subject to (9a) and dropping the index i 

from them. The optimization problem in dimensionless form became 

Minimize    *********** TcyFcPcyAcAC wEnswsLr ++++=               (14) 

Subject to   02

*

5

* =−=Φ PA                   (15) 

This nonlinear optimization problem with equality constraint was numerically solved 

for triangular, rectangular, and trapezoidal channel sections using the procedure similar to 

Swamee et al (2000a-c; 2001a,b; 2002a,b) and Chahar (2000).  

OPTIMAL COST AND LENGTH OF EACH SUBSECTION  

Use of the optimal side slope, bed width, and normal depth as obtained above for designing 

each subsection automatically satisfies the constraint (13a). The optimization problem was 

further simplified by assuming the length of the each sub-section of the transmission canal to 

be same i.e.    

NLxx ci /==  or Nxxi /1** ==   for all i              (16) 

Thus two constraints were eliminated and the problem became 

Minimize 
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Once the optimal dimensions of a section are fixed using (17), the discharge or λ for 

the next section becomes a function of N satisfying (18). Now the optimization problem 

stated by (17) and (18) is left with finding the minimum of (17) for only one unknown N. By 
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applying Fibonacci search (Bazaraa and Shetty 1979) on triangular, rectangular, and 

trapezoidal canal sections, a large number of optimal N were obtained for a number of input 

variables varying in the ranges 

∞≤≤−
*

510 Tc ; 0.10 * ≤≤ k                  (19) 

Analysis of the optimal data so obtained resulted to the following equation for optimal 

number of sub-sections in the transmission canal for all the three canal shapes:  
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where the subscripts N, and T in section shape coefficients denote number of sub-sections, 

and transition, respectively. The value obtained from (20) to be rounded to nearest integer. If 

the optimal number of sub-sections happens to be zero or one then no transition is required 

and assume N* = 1. The optimal length of the each sub-section x* of the transmission canal 

was given by 

  ** NLx c=                     (21) 

Further analysis of the optimal costs resulted to an empirical equation for the 

minimum cost of the transmission canal as given below: 
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For a large depth of the drainage layer or water table and negligible evaporation loss (21) and 

(22) reduces to the following simplified expressions:  
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Table 1: Coefficients for a Transmission Canal 

Section Shape Entity Coefficients 

Triangular Rectangular Trapezoidal 

(1) (2)    (3)    (4)    (5) 

kNT 8.72 8.72 9.75 

kTc 0.109 0.111 0.105 

 

Transition 

kTc1 37.76 37.16 40.92 

kNr 0.388 0.496 0.662 

kTr 0.556 0.546 0.503 

 

Earthwork 

kTr1 0.466 0.496 0.45 

kNL 1.09 1.09 0.79 

kTL 0.727 0.727 0.7 

 

Lining 

kTL1 1.544 1.562 1.486 

kNd0 0.05 0.14 0.15 

kNs 1.46 1.53 1.49 

kNd 0.17 0.20 0.21 

kTd0 0.10 0.12 0.15 

kTs 1.46 1.53 1.25 

kTd 0.24 0.17 0.16 

 

 

 

Seepage 

kTs1 3.085 3.137 2.615 

kNE0 0.47 0.35 0.40 

kNE 0.86 0.57 0.85 

kTE0 0.55 0.37 0.48 

kTE 0.128 0.073 0.352 

 

 

Evaporation 

kTE1 0.09 0.00 0.57 

 

Similarly other cases can be reduced from (20) and (22). Coefficients for transmission 

canal appearing in (20) and (22) are listed in Table 1. These optimal design equations and 

coefficients have been obtained by analyzing a very large number of optimal sections resulted 

from application of optimization procedure in the wide application ranges of input variables. 

The analysis consists of conceiving an appropriate functional form and then minimizing 

errors between the optimal values and the computed values from the conceived function with 

coefficients. Direct optimization procedures may be adopted for the optimal design of 

irrigation canal sections and for the transmission canal but they are of limited use and require 

considerable amount of programming and computation. On the other hand, using the optimal 
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design equations along with the tabulated section shape coefficients, the optimal design 

variables of a transmission canal can be obtained in single step computations. Equation (20) 

along with (21) shows that the optimal subsection length of the transmission canal is 

independent of the length of the transmission canal. Further, x* increases with increase in CT 

and depth of the drainage layer, while it decreases with increase in hydraulic conductivity of 

the porous medium, rate of evaporation, earthwork cost, lining cost and cost of water as 

expected. The optimal cost of the transmission canal is less sensitive to the optimal number 

of subsections. Though the optimal design of the transmission canal is obtained with 

assumption of equal cost for each of the transitions and of equal length for each of the 

subsections of the transmission canal, the method can be extended for unequal cost of 

transitions and unequal length of subsections. The assumption of equal length of subsection 

in obtaining the optimal length of a subsection from (21) can be relaxed by obtaining a new 

x
* each time for the remaining section of the transmission canal.  

CONCLUSIONS 

Generalized explicit equations have been presented for the optimal number of subsections 

and corresponding cost of a transmission canal. Using the proposed equations along with the 

tabulated section shape coefficients, the optimal parameters can be obtained in single step 

computations for transmission canals of triangular, rectangular, and trapezoidal shapes. 

Direct optimization procedures may be adopted for the optimal design of the transmission 

canal but they require considerable amount of programming and computation. The method 

can be extended to find the coefficients in the optimal design equations for other shapes such 

as circular section, parabolic section, rounded corner trapezoidal section, etc. if the 

corresponding seepage functions are developed. Furthermore, the present method can be 

extended in developing equations for the optimal design of a transmission canal having 

unequal cost of transitions and unequal length of subsections.  
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