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ABSTRACT 
The paper introduces the concept of a spatial query language for building information models (BIMs) 
and motivates its development. It provides formal definitions using point set theory and point set 
topology for 3D spatial data types as well as the directional, topological, metric and Boolean 
operators employed with these types. It also serves to outline the implementation of 3D spatial query 
processing based on an object-relational database management system.  
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INTRODUCTION  
Formal languages have proven to be an efficient, precise interface for human-machine interaction, 
especially with respect to information retrieval and navigation in complex digital models. A spatial 
query language provides abstractions for spatial relationships and thereby facilitates the spatial 
analysis of geometric models. In existing query languages for building models, such as the Product 
Model Query Language, the utilization of spatial relations within a query is limited to simple 
containment relationships. This is mainly due to the structure of the underlying building information 
model which usually does not incorporate the explicit geometry of its components. 

There is considerable demand for a spatial query language in engineering practice, especially with 
regard to the filtering or subdivision of building information models. The resulting partial models can 
serve as input for numerical simulation and analysis tools, or be made exclusively accessible to 
certain participants in a collaborative scenario.  

2D spatial query languages are already well established in the field of Geographic Information 
Systems (GIS). Egenhofer, one of its pioneers describes the purpose of a spatial query language as 
follows (Egenhofer, 1991): “The principle demand of Spatial SQL is to provide a higher abstraction 
of spatial data by incorporating concepts closer to our perception of space.”. This statement is also 
valid for the engineering domain, where geometry plays a crucial role in the design process. But up to 
now, only a small number of research projects has dealt with spatial query languages for 3D models. 

The paper presents the results of the first phase of the ongoing project, the formal definition of 3D 
spatial data types and the operators interacting with them, and provides an outlook on implementing 
3D spatial query functionality on top of an object-relational database management system. 
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DEFINITIONS OF SPATIAL DATA TYPES 

OVERVIEW 
Starting point for the development of a spatial query language is the formal definition of the se-
mantics of the available spatial data types and the operators working on them. Such a system of spa-
tial data types is also referred to as “spatial algebra”. It captures the fundamental abstractions of 
spatial entities and their relationships. 

Our spatial type system consists of the four types Point, Line, Surface and Body. The incor-
poration of types with lower dimensionality also allows for the utilization of the language in the 
context of dimensionally reduced models which are widely used in civil engineering. The definition 
of the spatial types is not limited to non-curved (plane) entities.  

The data types are formally defined using point set theory and point set topology (Gaal, 1963). 
This methodology is well established thanks to the efforts of the GIS research community. 

SIMPLE VS. COMPLEX TYPES 

The GIS research community distinguishes between simple and complex spatial types. Complex 
spatial data types can be understood as multi-component data types, i.e. a Complex Point can consist 
of an arbitrary number of points, a Complex Line can consist of several curves and a Complex Body 
may have a number of unconnected parts. Though simple data types reflect intuitive understanding, 
they do not incorporate the properties of a closed type system, where the geometric set operations 
union, intersection, and difference never result in an object outside of the type system. We therefore 
decided to use complex spatial objects. 

In the main, our definitions for spatial data types in 3D space are aligned to the model proposed 
by Schneider and Weinrich (2004). An exception is the denomination of the data types: instead of 
point3D, line3D and volume we use the terms Point, Line, Surface and Body, as proposed in 
(Zlatanova, 2000). In addition, the type relief is omitted, because it is not needed for the application 
domain considered here.  

The topological notions of boundary (∂A), interior(A°), exterior (A¯) and closure ( A ) are given 
for each spatial data type. They are required for the formal specification of topological relationships. 

POINT  
A value of type Point is defined as a finite set of isolated points in the 3D space: 

3{ |  is finite}Point P P= ⊂ \  
By definition, a Point P = {p1,...pn} has no boundary, i.e. ∅=∂P , and all points belong to the inte-
rior, which is equal to the closure: PPP =°= . The exterior of P is P¯= R3 – P.  

LINE 
A Line is an arbitrary collection of 3D curves. It is defined as the union of the images of a finite 
number of continuous mappings from 1D to 3D space: 
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A Line is composed of several curves2. Each of them results from a single mapping fi. The 
mappings f(0) and f(1) are called the end points of the curve. The boundary of a Line is the set of the 
end points of all curves it is composed of, minus those end points that are shared by several curves. 
These shared points belong to the interior of a Line. The closure of a Line L is the set of all points of 
L including the end points. For the interior we obtain LLLLL ∂−=∂−=° , and for the exterior we 
get  L¯= R3–L . 

SURFACE 
Since the definition of the Surface type is based on mappings of 2D regions to 3D space, the 
definition of the Region2D type as given in (Schneider, 2006) is needed first. A Region2D is 
embedded into the two-dimensional Euclidean space R2 and modeled as a special infinite point set. 
The concept of the neighborhood of a point is used to define the interior, exterior and closure of the 
Region2D type. So, assuming the existence of a Euclidean distance function in 2D: 

2 2 2 2
1 1 2 2 1 2 1 2:  with ( , ) (( , ), ( , )) ( ) ( )d d p q d x y x y x x× → = = − + −\ \ \ y y  

Let q∈R2 and ε∈R+. The set 2( ) { | ( , ) }N q p d p qε ε= ∈\ ≤  is called the (closed) neighborhood of 
radius ε and center q. Let X R⊆ 2 and q∈R2.  q is an interior point of X if there is a neighborhood 
Nε(q) such that Nє(q) X.  q is an exterior point of X if there is a neighborhood N⊆ є(q) such that 

ε . q is a boundary point of X if q is neither an interior nor an exterior point of X. q is 
a closure point of X if q is either an interior or a boundary point of X. The set of all interior / exterior / 
boundary / closure points of X is called the interior / exterior / boundary / closure of X.   

∅=∩ Xq)N (

Schneider et al. use the notion of regular closed point sets for the definition of the Region2D type 
in order to avoid geometric anomalies: a set of points R⊆X 2 is regular closed if, and only if, 

.°= XX  The interior operation excludes point sets with dangling points, dangling lines and 
boundary parts. The closure operation excludes points sets containing cuts and punctures while 
adding the boundary that was excluded by the interior operation. 

Specifications for bounded and connected sets are another requirement. Two point sets X, Y 
 R⊆ 2 are separated if, and only if, YXYX ∩=∅=∩ . A point set X  R⊆ 2 is connected if, and 

only if, it is not the union of non-empty separated sets. Let q = (x, y)∈R2 and 2q x y= + 2 . A set X 
R⊆ 2 is bounded if there is a number r∈R+ such that rq <  for all q∈X. The type Region2D can 

now be defined as: 
2{ |  is regular closed and bounded,

the number of connected sets of  is finite }
Region2D R R

R
= ⊆ \  

Based on this definition, the Surface data type can accordingly be defined as the union of the images 
of a finite number of continuous mappings from a 2D region to 3D space: 
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The components of a Surface that are created by a single mapping si are called superficies2. All 
boundary points of the Region2D object are mapped to boundary points of the superficies. The 
boundary of a Surface is the set of all boundary points of the superficies it is composed of, minus 
those boundary points that are shared by several superficies. The shared points belong to the interior 

                                                           
2  The definitions for curves and superficies provided in this paper introduce the basic ideas, but are too brief and not restrictive enough. 

Amongst others it is necessary to prevent self-intersection of curves and superficies. For a complete and sufficient definition, please see 
Schneider and Weinrich (2004) or follow-up publications by the authors of this paper. 
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of the Surface. The closure of a Surface S is the set of all points of S including the boundary points. 
For the interior we obtain SSSSS ∂−=∂−=° , and for the exterior we get S¯= R3–S . 

BODY 
Bodies are embedded into the three-dimensional Euclidean space R3 and modeled as special infinite 
point sets. It is possible for a Body to consist of several components and it may possess cavities. The 
notion of the neighborhood of a point is employed to define the interior, exterior and closure of the 
Body type, the definition of which corresponds to that given above for 2D space.   

Let X∈R3 and q∈R3.  q is an interior point of X if there is a neighborhood Nε(q) such that 
Nε(q) X. q is an exterior point of X if there is a neighborhood N⊆ ε(q) such that ∅=∩ XqN )(ε . q is 
a boundary point of X if q is neither an interior nor an exterior point of X. q is a closure point of X if q 
is either an interior or a boundary point of X. The set of all interior / exterior / boundary / closure 
points of X is called the interior / exterior / boundary / closure of X. 
For similar reasons as for the definition of Region2D, the definition of the type Body is based on the 
notion of regular closed point sets: 

A set of points R⊆X 3 is regular closed if, and only if, .°= XX  
Here, the interior operation excludes point sets containing isolated or dangling point, line, and surface 
features. The closure operation excludes point sets with punctures, cuts or stripes and reestablishes 
the boundary that was removed by the interior operation. By definition, closed neighborhoods are 
regular closed sets. 

Another essential is a specification for bounded and connected sets in 3D. Two point sets  X, 
Y⊆R3 are separated  if, and only if, YXYX ∩=∅=∩ . A point set X R⊆ 3 is connected if, and 
only if, it is not the union of non-empty separated sets. Let q=(x, y, z)∈R3, and 2 2q x y z= + + 2 . 
A set X⊆R3 is bounded if there is a number r∈R+ such that rq <  for all q∈X. The spatial data 
type Body can now be defined as 

3{ |  is regular closed and bounded,
the number of connected sets of B is finite }

Body B B= ⊂ \  

DEFINTION OF SPATIAL OPERATORS 
Spatial operators operate on spatial data types and possess spatial semantics. They can be classified 
into 

- directional operators (such as above, below, northOf, southOf) 
- topological operators (such as touch, contain, equal, inside) 
- metric operators (such as distance) 
- Boolean operators (such as union, intersection) 

The following sections provide formal definitions for the spatial operators available within the 
proposed spatial algebra. 

DIRECTIONAL OPERATORS 
Directional operators can be used to query directional relationships of two spatial objects, i.e. their 
relative position. A directional operator always has two operands, which can be any combination of 
the spatial data types defined above. The result is a Boolean value. Before directional operators can 
be used, it is necessary to choose a directional reference system. For practical reasons, it will in most 
cases be aligned to the main axes of the building model.  
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We provide two mutual exclusive directional operators for each Cartesian direction: For the x direc-
tion eastOf and westOf, for the y direction northOf and southOf, and for the z direction above and 
below. 

In literature, usually only point-to-point relationships are addressed. But in the context of 3D 
building models, directional body-to-body relationships are much more interesting. Fig. 1 shows 
different approaches for defining directional relationships, especially relevant when considering 
partly concave objects. In case a, the bounding planes of the operands form the base for the decision. 
Another widespread approach is to define directional relationships on the basis of the centroids of the 
bodies. In our opinion, these methods are not appropriate because their results are imprecise in many 
cases. A more suitable approach is to take into account the extrusion of the second operand in the 
respective direction, as shown in Fig.1, case b. If the resulting body intersects with the first operand, 
the result of the directional operator is true. In case b, the objects B, C and D can be classified as 
being above or below A. Note that according to this definition, object E is neither above A nor below 
it. 
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Fig. 1: Different methods for defining directional relationships 

Formally, this definition can be expressed as follows: Let A and B be two 3D spatial objects, i.e. A, B 
⊆ R³  with ( ) Aaaaa zyx ∈= ,,  and  ( ) Bbbbb zyx ∈= ,, .   

 

A eastOf B ⇔ ba,∀  with  :  y y z z xa b a b a bx= ∧ = ≥  
A westOf B ⇔ ba,∀  with  :  y y z z xa b a b a bx= ∧ = ≤  
A northOf B ⇔ ba,∀  with  :  x x z z ya b a b a by= ∧ = ≥  
A southOf B  ⇔ ba,∀  with  :   x x z z ya b a b a by= ∧ = ≤  
A above B  ⇔ ba,∀  with  :   x x y y za b a b a bz= ∧ = ≥  
A below B  ⇔ ba,∀  with  :   x x y y za b a b a bz= ∧ = ≤  

TOPOLOGICAL OPERATORS 
Topological operators can be used to query topological relationships of two spatial objects. 
Clementini & di Felice (1995) define topological relationships as follows: 

“A topological space is generally described as a set of arbitrary elements (points) in which a 
concept of continuity is specified. Let X and Y be topological spaces. A mapping f: X→Y is said to 
be continuous if for each open subset V of Y, the set f -1(V) is an open subset of X. If a mapping f is a 
bijection and if both f and the inverse f -1:Y→ X  are continuous, then f is called a topological 
isomorphism. Topological isomorphisms preserve the neighborhood relations between mapped points 
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and include translation, rotation and scaling. Topological relations are those remaining invariant 
under a topological isomorphism.“ 

The method we use to formally describe the semantics of the topological operators is based on the 
work of Egenhofer & Franzosa (1991) and Clementini & di Felice (1996). Egenhofer uses a 3x3 
matrix to express the nine intersections of the point sets that make up the interior, the boundary and 
the exterior of two geometric objects A and B:  

⎥
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

°
°

°°°°
=

−−−−

−

−

BABABA
BABABA
BABABA

BAI
∩∩∩
∩∩∩
∩∩∩

δ
δδδδ

δ
),(9  

The resulting matrix can be used to precisely define topological relationships by means of empty 
(Ø) and non-empty (¬Ø) sets. This method is also referred to as the "9 intersection method" (9IM). 
Egenhofer & Franzosa found eight possible relationships using the 9IM for region-to-region 
relationships in 2D. Zlatanova (2000) used the 9IM to systematically investigate the number of 
possible relationships for simple Points, Lines, Surfaces and Bodies in 3D and found 69 relationships. 
The number is likely to be much higher for non-simple objects. Because such a differentiation is 
much too finely grained to be of use in engineering practice, a set of relationships has to be chosen 
that is of considerable significance for engineers and has a corresponding natural language equivalent.  

Clementini & di Felice (1996) extend the 9IM by (1) only specifying whether the point set re-
sulting from the nine intersection operations is empty, or not, where it is necessary and (2) by spe-
cifying the dimensionality of the point sets where it is important. The former essentially means that 
certain 9IM configurations are subsumed under a single common name and others are disregarded 
completely. For the latter, a dim operation has been defined that returns the maximum dimension of 
the point set. This method is also referred to as the “dimensionally extended 9 intersection method” 
(DE-9IM). DE-9IM matrices use the following symbols besides Ø and ¬Ø: The star (*) means there 
is no specification for the resulting set at this position, and numbers (0, 1, 2, 3) refer to the 
dimensionality of the resulting set. 

Fig. 2 shows all topological relationships defined within our framework together with the DE-
9IM matrices that formally describe them. It also contains a matrix of pictograms that illustrates the 
semantics of each relationship for any of the possible combinations of spatial data types. In the 
pictogram matrix, rows correspond to the type of the first operand and columns to that of the second 
one. Most of these definitions are equal to that of Clementini & di Felice (1996) and the OpenGIS 
standard (OGC, 2005) respectively, with the following exceptions:  
1. The underlying data types are defined for the 3D space. Accordingly we included the data type 

Body within our definitions. 
2. We restrict the validity of each operator to a subset of all possible combinations of operands. 
3. Since the boundary of a Point is by definition an empty set, we do not include the definitions for 

the Point type in the matrices valid for all other types. Instead, we specify additional matrices for 
relationships where Points are involved with the following occupation: If A is a Point and B is of 
any other spatial data type, we define: 

( , )
A B A B A B

I A B
A B A B A B

δ
δ

−

− − −

⎡ ⎤° ° ° °
= ⎢ ⎥°⎣ ⎦

∩ ∩ ∩
∩ ∩ ∩ −
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Fig. 2: The topological relationships defined within the spatial algebra. The DE-9IM matrices that formally 

define the semantics of the relationship is shown on the left hand-side. In DE-9IM matrices the following 
symbols are used besides Ø and ¬Ø: The star (*) means there is no specification for the resulting set at this 

position, and numbers (0, 1, 2, 3) refer to the dimensionality of the resulting set. In the pictogram matrix on the 
right-hand side, rows correspond to the first operand and columns to the second one. 
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 If B is a Point and A is of any other spatial data type, we obtain: 

( , )
A B A B

I A B A B A B
A B A B
δ δ

−

−

− − −

⎡ ⎤° ° °
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 In the case that A and B are points, we write: 

( , )
A B A B

I A B
A B A B

−

− − −

⎡ ⎤° ° °
= ⎢ ⎥°⎣ ⎦

∩ ∩
∩ ∩

 

4. For the purpose of an extended differentiability, we define two additional relationships meet and 
onBoundary as refinements of touch. For user convenience, we also define the relationships within 
(inverse to contain) and equal. 

5. We define two special relationships surround and encompass for (partially) concave spatial objects, 
as depicted in Fig. 3. Here, the convex hull of the second operand is taken into account. A formal 
definition for the corresponding convex object of an spatial object will be given in an extended 
publication.  

METRIC OPERATOR 
The only metric operator defined for the spatial data types so far is the distance operator. It has two 
operands which can be of any combination of the spatial data types. The distance between two spatial 
objects of arbitrary type is defined as the shortest distance between any of the points belonging to the 
closure of these objects. 

3

,
, : ( , ) min( ( , ),  ,  )

a b
A B distance A B d a b a A b B⊂ = ∈\ ∈  

surround

encompass

A*A

B containdisjoint

A*A

B

A*A

B overlapdisjoint

A*A

B

 
Fig. 3: The topological relationships surround and encompass for partly concave spatial objects. They are 

formally defined by means of the topological relationship between the first (A) and the second operand (B), and 
between the first operand (A) and the corresponding convex object of the second operand (B*). 

 9



BOOLEAN OPERATORS 
The Boolean operators union, intersection, difference have two operands that are of the same spatial 
type. The result likewise resembles that of the operands. The operators possess the same semantics as 
their equivalents in pure point set theory. 

IMPLEMENTATION CONCEPTS 

The implementation of the abstract type system into a query language will be performed on the basis 
of the query language SQL, which is a widely established standard in the field of object-relational 
databases. The international standard SQL:1999 extends the relational model to include object-
oriented aspects, such as the possibility to define complex abstract data types with integrated 
methods. Database management systems (DBMS) that support these features are also referred to as 
object-relational database management systems (ORDBMS). They combine the advantages of the 
relational concept, such as high efficiency in query processing, with that of object-oriented modeling, 
such as the high level of abstraction by providing encapsulation and inheritance (Melton, 2003).  

Due to lack of space, a detailed description of our implementation concepts will be given in 
follow-up publications. This involves the choice of data structures capable of storing the geometry of 
building components, concepts for combining non-geometric (semantic) information with shape 
descriptions, and strategies for a fast processing of queries containing spatial predicates including 
index structures and alternative geometry representations based on uniform Cartesian grids 
(“voxels”). 
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