ASA, An Interactive Assistant to Architectural Designers
BENEDETTO COLAJANNI!

ANDREA FORNARELLI?

ALBERTO GIRETTI®

BERARDO NATICCHIA*

GIUSEPPE PELLITTERI’

ABSTRACT
In the management of information for the design case reasoning seems
the best fit for simulating the real designer ' s behaviour. In order to construct
a plausible interactive assistant to architectural designers three main problems
are to be solved: the way of encoding and indexing technical knowledge in
order to easily recover the best starting case; the way of giving semantics to
sketches; the way of coming to terms with inconsistencies generated during the
process. An interactive architectural assistant is proposed based on case
reasoning, managing architectural information encoded in a memory of real
instances of the architectural type of reference and technical information
encoded according the SfB system. Its architecture is made of two main parts.
The first includes case memory, case recovery engine, abstraction engine and
the design board. It manages the general and specific case knowledge in its
abstract and semantics given form. The second includes the tools to generate
single objects composing the architectural organism both directly and in
parametric form, constraint management and consistency checking. The
representation of the state of the object is twofold: as a drawing in the
drafting board, as a symbolic representation in the design board in which all
#he attributes of the object are recorded together with their relationships. The
aphics of the assistant is implemented in AutoCAD environment while the
alphanumeric knowledge is implemented in Kappa. The general architecture
gf ASA and the single modules are described, followed by a simulation of a
csession of work.

‘Key Words

@ase reasoning; architectural assistant; knowledge engincering

Construction Informatics Digital Library http://itc.scix.net/

(o))

—

0

N~

2

(]

= 1 Dipartimento di Progetto e Costruzione Edilizia, University of Polermo.

o 2 Consiglio Nazionale delle Ricerche, Instituto di Edilizia, University of

Ancona.

3 Instituto di Informatica, Faculty of Engineering, University of Ancona.
: Instituto di Exilizia, Faculty of Engineering, University of Ancona.

Dipartimento di Progetto ¢ Costruzione Edilizia, University of Palermo.

209

Colajanni, et al

INTRODUCTION

The aim of this paper is to describe an interactive design tool, an
Architectural Symbolic Assistant (ASA) able to help a designer from the
conception of a functional and only qualitatively dimensioned schema,
expressed in a wire-frame sketch, to the realisation of executive drawings. The
chosen approach is case reasoning. Since the pursued goal is having a tool
giving its assistance both in the design phase during which the functional and
organisation choices are made and in the phase of technological choices, two
kinds of data bases are to be created. The first is the case memory of items
of the architectural type the designer is concerned with. The second is the
data base of the technical elements from which the ones most apt to realise
the architect's aim are chosen. The first has a range of variability and a
virtuality of growth qualitatively different from the second. To be really useful
it has to be rich in cases covering a wide range of design situations. In the first
implementation of ASA we thought it convenient to limit the knowledge only
to one architectural type: row houses.

The goal of entrusting some part of the design process to an automatic
tool has always been a very hard one. Much theoretical work has been done
on the subject, both on the attempt to define the very nature of the process
and on the implementation of tools performing some particular design tasks.
In the run the focus has shifted from problem solving techniques to case based
reasoning.

Case based reasoning is a good way to try to simulate human behaviour
in the field of design. Designers always attempt to recall from their memory
(their personal knowledge base) when they are faced to a specific design
problem in a specific context situation. The main difference between human
knowledge base (the memory) and any kind of artificial one lies in the
diversity of constitution. The first is, by its nature heterogeneous or, perhaps
better, ill-structured. The various objects that form it have different degrees
of definition. Degrees cannot be ordered in levels, because these form a
continuum. Further, they are intrinsically heterogeneous, as the various parts
of a single object are generally remembered with different degrees of
exactness. Another characteristic, in a sense a consequence of this
heterogeneity, is a certain degree of randomness of the access to memory; this
allows in a given situation the reuse of something (parts or entire structures,
as well as only some particular effect, or the image) from an object which no
rational criterion can be applied. Hence the difficulty, if not the impossibility
of building up a case memory and algorithms of retrieval simulating human
memory in the field of architecture.

On the contrary, a casc memory, if we want the retrieval to be efficient
and rapid, needs to be highly structured. Structuring means stiffening the
description of the object, taking decisions on the relative importance of the

270

An Interactive Assistant to Designers

various characteristics of it. The main difficulty remains the way of the access
to knowledge base via indices which depends on the description of the objects
that constitute the knowledge base. However, the description depends on what
the designer is allowed to do with the retrieved case. This use can be simply
looking at it as a source of ideas for further manual designing or can be
considering it as a starting solution on which to work with change operations
till the solution is reached. Hence the representation of the case is to be as
articulate as possible in order to be able to operate on single elements of the
item. As design decisions are taken at different levels of abstraction, the case
memory must contain different levels of representation. As far as the row
houses are concerned three levels are provided: an accessibility graph among
rooms, a wire-frame representation, a fully drawn representation in plan and
in section. The specification of how each level is implemented is given in the
description of Case Memory. Keys of access to the data base can be any
subset of the characteristics constituting the description of the case.

The characteristics by which a case is described are aimed at two
purposes: the retrieval of the case (or cases) best approaching the
performance the designer wants to obtain; the possibility of modifying the
description of the retrieved case in order to reach the goal. The first purpose
implies a previous organisation of the domain of the cases in order to give it
a structure that minimises the research. For every architectural type the most
abstract description is the accessibility graph. At the second level of
abstraction in the field chosen for developing ASA, the row houses, an
empirical research has shown that the elements of the plan which has the
most influence on the final disposition are: number of floors; type of staircase
(one flight, two flights, winding); position and orientation of the staircase;
position of kitchen and bath: shape of the living room. Such information is
then supplied for every case. For the second purpose, the widest possibility of
modifying the case retrieved, the entire scheme is to be represented through
the composition of single rooms. These, in turn, will be represented in their
case base in a parametric way with dimensional constraints. A set of
constraints manages the consistency of the entire case both in its initial shape
and in the course of the modifying process. Less problems are met in the
technological data base. A good organisation of it can be achicved using the
SIB classification. Less difficulties are also met in the second phase of the
process: the passage from the wire-frame representation to the execution
drawings as this phase substantially attributes a technical specification to the
abstract elements already defined. The technical case base contains also the
knowledge able to solve the connections among elements in the various
predictable situations.

271

Colajanni, et al

THE ARCHITECTURE OF THE ASA SYSTEM

The system accomplishes the functionalities of an Assistant to the
architectonic design through the interaction between various modules, each
able to fulfil specific functions (see Figure 1). The modules can be grouped
according to four macro functionalities:
- Interface.
- Parametric CAD: Drafting Board, Parametric Geometry System,
Parametric Architectural Objects Engine.
- Symbolic Reasoning: Case Engine, Abstraction Engine.
- Quantity Reasoning: Quantity Reasoning System.

INTERFACE

Abstraction
Engine

Figure 1. The Architecture of the System ASA

272

An Interactive Assistant to Designers

Drafting Board

The Drafting Board module is a data base containing the instances of the
geometrical entitics and their groupings generated during the design process.
It facilitates the visualisation of the represented design objects. The module
supports the activities and the interactive functions typical of a two-
dimensional CAD, as well as the logical connections with the other
representations of the same design object in other modules, for instance, the
Design Board.

Design Board

The Design Board is a data base containing the symbolic representation
of the actual state of design process. The data base is conceptually divided
into parts containing instances of: architectonic objects, geometrical shapes,
scenes, relationships between objects, parameters and constraints. Each object
in the Design Board is described by a set of numerical and alphanumerical
attributes and a set of methods that capture its functionality. Objects are
always instances of classes pre-defined in other data bases of ASA. An object
in the Design Board that can be represented graphically is logically connected
with the corresponding object in the drafting Board. The set of objects and
values of the attributes describes the state of the design process. The Design
Board manages the temporal sequence of the design phases (considered as a
sequence of states) according to the following scheme:
- anew state is created every time a new design action is made; the state
is put in front of a stack of states;
- if the user requires it, the effects of the last action are undone and the
last state is restored.

Case Memory

This memory is a data base with a structured organisation of stereotypical
solutions of design situations. The basic element of the Case Memory is the
scene. A scene represents a design event through the representation of its
effects. Its nature is episodic. If it is to be possible to modify a scene in order
to adapt it to a new situation it is necessary to abstract some general outlines
from the event, in order to be able to manipulate and to define the non
essential lines of the scene. For some design themes it seems possible to
define a language, based on objects and primitive relationships, with which to
describe the scene, allowing learning processes. In a scene the following items
are described:
- the applicability of the scene;
- the abstract description of the represented context;
- areal instance of the represented context.

The implementation of a data base for the design of row houses is

273

Colajanni, et al

described. This conceptual structure may be formalised in terms of frame (in
Kappa language by Intellicorp) as in the scheme referring to the class
"ROW_HOUSE" in Figure 2. The slots content is specified here after:

- the slot "NAME" contains the mark of the scene;

- theslot "PRECONDITIONS" contains a list specifying the limitations for
the applicability of the scene. The arguments of this list refer to instances of
the classes "POSITION MATRIX" and "TYPE_OF STAIRCASE";

- theslot "SPECIFIC" describes the characteristics distinguishing the scene
from other ones equally apt to be applied to the design problem.

Preconditions distinguish " design variants” while the specifics characterise the
possible variations of a variant. The arguments of the list contained in the slot
are in the classes "ACCESSIBILITY_GRAPH" and "POLYGONS";

- the slot "PLOT" has the structure of a list containing the instances
constituting the abstract description to which the scene is applied. The
monitor "JF NEEDED* contains the procedural structure in terms of
"CALL" to the procedure of instantiation of the design solutions
characterising the scene;

- the method "EVALUATE" contains the call to the procedure evaluating
the preconditions. Its list of parameters accepts only instances of the objects
in the classes pertaining to preconditions. These instances are abstracted
interactively from the design scheme. The method contains only the “CALL”
to the procedure of evaluating the consistency between the given list of objects
and the list in the slot "PRECONDITIONS". The result is of Boolecan type
(True, False);

- the method "CHOICE" contains the "Call" to the procedure of
evaluation of the consistency of the specifics with the context to which the
scene is applied. It accepts as arguments objects of the same classes as in the
slot "SPECIFIC*". The procedure shall evaluate, in a not binary way, an index
of applicability of the scene to the design scheme.

The class of objects "POSITION MATRIX" contains in the slot
"ELEMENTS" a list of instances of the class "FUNCTIONAL_SPACES".
The objects in the slot "POSITION" are instances of the class
"PLAN_POSITIONS". In the Case Memory of the Row Houses the Position
Matrix contains only the positions of kitchen (K), bath (B) and staircase (S)
if it exists.

The class "ACCESSIBILITY GRAPH" contains in the slot
"ELEMENTS" instances of the class "FUNCTIONAL SPACES". The
objects contained in the slot "ACCESSIBILITY" are instances of the class
"ACCESSIBILITY RELATIONSHIP". The <class

"FUNCTIONAL SPACES” " constitutes a hierarchy of scenes.

The slot "FUNCTION" of the class "FUNCT IONAL SPACES"

contains one of the symbols marking the functions typical of the spaces of the

274

An Interactive Assistant to Designers

dwelling (sce Figure 2). The slot "SHAPE" contains an instance of the
repertory of polygonal shapes. The method "FURNISH" contains the
"CALL" to the procedure that instantiates the furniture of the dwelling,

The two slots of the class "ACCESSIBILITY_RELATIONSHIP " contain
instances of the class "FUNCT IONAL SPACES". The method
"SOLVE_ACCESSIBILITY" contains the procedure of instantiation of the
access. The method is based on the evaluation of the amplitude of the
adjacency and on the values of the slot "SPACES". The slot "POSITION"
in the class "PLAN_POSITIONS" contains a value from 1 to 9 whose
reference is bound to the scheme of Figure 2. The matrix schematises the
positions on the plan of the dwelling. Positions (1,4,7) are situated on the
front, positions (2,5,8) in the middle, positions (3,6,9) in the rear of the
dwelling. Positions (1,2,3) and (7,8,9) are situated on the blind sides of the
dwelling.

The slot "TYPE" of the class "TYPE_OF STAIRCASE" contains one
of symbols of Figure 2 representing an instance of the repertory of types of
staircases shown in the figure.

A first Case Memory of row houses has been implemented through a
collection of cards in the class "ROW_HOUSE". A sample card, the SP25
of the collection is analysed in order to explain the process of implementation
of the repertory. Each card is marked with a name written in bold letters in
the square in the top left corner. Near the square there is some information
referring to the position in the plan of kitchen, bath and staircase. Of this last
also the type is shown. In the card are reported: an accessibility graph of the
scheme, a wire-frame plan and a real instance of the represented dwelling,
The implementation of a subsequent section of the Case Memory, provided
in the next release of the system shall allow the recursive application of scenes
to the wire-frame scheme, thus obtaining a progressive process of refinement
of the description leading to a representation level comparable with the
drawings of the instances.

Case Engine

The functions of the case engine, aimed both at assimilating new
situations and of adapting known situations to new ones, are the following:
1) Indexing: some relevant characteristics of a situation in input are used to
build a set of indexes and store the situation in the case memory after a
consistency check.
2) Retrieving situations similar to the desired one through the use of
indexes. In a design session the case retrieved becomes the initial solution.
3) Modification: the initial solution is adapted to the new context, generating
the new solution.
4) Test: the proposed solution undergoes a consistency test.

275

Colajanni, et al

o.gn-ucnﬁ_o,o&o&_
Mar—o» o__.u_vem uoj ._—am m

S"Eo-.osn.,.o-o&et_
0sRA u_k-_:ww:_ uo| -_S_m. @

o,onqo_-.ocu) ,
Ew::u».:_:_-_-um i_

oIWO8 ¥ oyv,| o8I9A [
d¥FIdAsnIl vjEOY i

weuipna spvdis onsdsosd g
otlaa I[v3pruuc| 3yweg

adsoxd
W Teaiphidoor v ()

YIUHMIL 057G it OKIBA
I[ESLIAITN WjvIG

TIUN|IRSL YW { OFITA
seslaasedl sjeag

FIVOS 10 Wil ORIQLEBIY

- T

) -
" W | ot 0 S gy
] - -

QA@ L L PP e

8 Rigz

L L odiL 1018
9 § r HWON LOTS
7 3 n YIYD$71A70dIL $SYID
INOZISOd YIEHOS YUTEISSEIOVYTIATOSH QOHLAW
T RINIIGWY LOIS
ITYNODITOd SHYGd 1 ALNAIEWY LOTS
‘OMMOLYBITY (AWRVYD
NODATOd SSYID |1, YLITIGISSEDO Y IQTANQIZYTHY SSYTD
ooy wp oD Ny
' i ENOIZISOd LOTTS
owso I og-oTutyy asd ALNFIENY LOTS
ozTR{eBIND ax @ENYED
oun|Fdos o FTHOILEAINYTdTINOIZISOd SSYI1D
L2 Fi
wajony Az
othg g YATHEY QOHLAW
oussdunsi] a _ YW0d 1078
ossutu] 1 YRINIK ™ QID1d434NS 10718
ey s ANOIZNAA 1LOTS
dWON LOT8
QIOROTIY NN Id [T)

[Z¥dS IO INOIZNNA

(N ELNEIGWY 'W ZINTIGAY)
JYLITNGISSEIDY -
(¢ ALNZIGWY ‘| ZLNIIGAY)
YLITQISSAIOY -
WsID .YLINGISSOIV LOIS
N SLNSIGWY
7 AINSISHY
| BINSIGNY
USID LINGWETE 10718
SWON 1078
@EWYed)
YLINAISSEIOIY 1704 YED SSYID

ITYNOIZNNATILNSIENY §SYTO

(O§'d) INOIZISOd -
(@'N) INOIZISOd -
OI'W) INOIZISOd -

WSID INOIZISOd LOTS
25 -

g-
e
GSID LLNBWEIE L0718
gHON LOTS
ENYYED
INOIZISOI"HOIYLYH SSYTO

«3OIOHD. QOHIAW
WHLYATYAS, QOHLIW

ONDESIA 10 YINGE00YUd . ASTRAN 1. NOWAG
GTYNOIZNNITLLNIIENY dO §SYD ND
N HINTIENY
7 LALNRIGWY
| GLNIIGNY
AsID 10U
(YLIUAISSIOOY CAVED 40 SSVID ND
JYLITIGISSIIOY
(NODAIOd 40 SSY"D NI
ONYOIDDOS™ YWY Od
USID . SOLI0EdS.
(YVIYDSTOdLL J0 SSYTD NI
YIvos
@NOIZISO4 DALY 40 §§VID ND
HIYNOIZISOd " HIALY N

USID . SNOLLIANCOEYd.

1018

4078

1078

WXEL . FWON. LO7IS
(YNEDS)
VYBIHOSTOIDDOTIV S§VIO

Figure 2. The Card of a Row House in the Case Memory: An Example

276

An Interactive Assistant to Designers

5) Explication, Correction and Test: if the solution is inconsistent an
explication of the failure is sought, identifying the cause of the inconsistency,
the solution is adjusted and undergoes a new consistency test.

Those functions are supported by the following data structures:
- Indexing rules: they identify the characteristics that can be used in a
predictive way in order to realise the fit indexes in the case memory.
- Case memory: it represents the episodic memory, constituting the data
base of the experience.
- Similarity metrics: it is the base for a selection function when the case
memory proposes several prior solutions.
- Modification rules: they adapt the prior solution when, as it is the typical
case, the prior solution only approximates the actual problem solution.
- Repair rules: they encode the rules that allow modifications when a
solution is recognised as inconsistent.

Quantity Reasoning System

In ASA the objects composing a scene can be defined also in a parametric
way: a typical interval of some attributes is given, while the exact value is
specified in the instantiation. The module QRS supports the management of
the parametric attributes and their relationships. Two types of parameters are
possible: numerical and symbolical. The numerical parameters can be
considered as variables assuming values from a domain which, in turn, may
consist of one or more intervals. Thus an algebra of intervals is also necessary.
A relationship among n numerical parameters consists of n functions defining
each parameter in function of the others.

The domain of a symbolic parameter is constituted by a set of symbols.
A relationship among parameters is defined extentionally through a set of n-
tuples representing all the combinations satisfying it, or intentionally through
a code segment which verifies if a certain n-tuple satisfies it. For both types
the management of the relationship settles the value of each parameter in
function of the present values of the others.

Parametric Geometry System

The Parametric Geometry System manages parametric geometry in which
the shapes are defined only implicitly trough a set of points and a set of
constraints on their positions.

Parametric Representation of Shapes

The geometry of an object is defined through a set of n characteristic
points (both on the border and internal to the body) and a set of equations
among them. The border of the shape is defined through the m generative
equations between the characteristic points.

277

Colajanni, et al

- The PGS only translates the geometric relationships into a system of
inequations, taking into consideration positional constraints, whose
management is left to the QRS.

Parametric Architectural Object Engine

The Parametric Architectural Object Engine (PAOE) implements the
functions of drawing and manipulating the building technical elements that can
be classified according PC | SfB system.

Technical elements are described through four types of information:

- classing: necessary for a complete and unique classing of the object as an
instance of a class of technical elements: class of membership, number of the
instance;

- graphical: position in the space of general reference and the primitive
graphical entities necessary to the representation of the element;

- numerical: the instances of the parameters that allow the representations;
- alphanumeric: referring the object to particular classes or subclasses as
"working”, "materials™ and so on.

The technical elements can be represented in three ways:

- executive: the complete drawing of the element. It is possible only if all
the information necessary to a full instantiation has been given;

- symbolic: the system represents it either if requested or if it has not been
given all the necessary information. This representation shall be employed
when one has the intention of putting a technical element in a particular
position without fully defining it. In this case the system will use the default
values of not instatiated parameters;

- 3D: if requested; again default values shall be used in lack of the
necessary information,

Every technical element is defined through a set of geometrical-
dimensional parameters, alphanumeric attributes and a set of functions
referring to the operations possible on it. The parameters are of two types:
external, that relate the elements to the entire drawing (typically the co-
ordinates of the insertion point or some dimensional parameters depending
on the class of the element) and internal. The instantiation of an element
implies the instantiation of all the constrains connected with it.

Abstraction Engine

The module of the Abstraction Engine operates a geometrical
interpretation of not structured graphical data in input. From a set of lines on
the Drafting Board not connected with any object on the design board, the
interpretation process tries to define possible organisations of spaces implied
by such lines, the possible shapes of those spaces according to a data base of
pre-defined shapes and the relationships between the defined shapes (see

278

An Interactive Assistant to Designers

Figure 3). The process then creates on the Design Board the instances of the
convenient classes "Geometrical Shapes” and connects them logically to the
lines in the Drafting Board. This first interpretation can be followed, through
the access to the Case Base, by a further interpretation that will produce, in
the actual design context, hypotheses of signification of the datum, not
structured in input.

The Data Bases

Figure 1 shows all the data bases of the system. They are of two types:
permanent data bases and working data bases (Boards).

Permanent data bases are not modified during the work sessions except
in particular phases such as learning. They represent the knowledge of the
system in the specific application domain. Permanent data bases are:
Architectural Object, Geometric Entity, Constraint, Quantity, Rule Bases and
Case Memory.

Square(Ambieny(B))
L-Shape(Ambient{A))
Incastro(Ambiente(8), Ambiente(A))

Figure 3. The Interpretation Process

Working data bases contain the description of the state of the design
process: they are empty at the beginning of the work session and are
continuously updated. Of great importance is the function of "undoing”, the
capability of bringing back the system to the state preceding the last operation.

Flows of Data and Control

In this section we shall take into consideration the global behaviour of the
system, examining the flows of data between the modules and the control of
the system. ASA gives the user the possibility of direct access both to the
functionalities of a single module and to an organised sequence of them.
The possible basic functions are:
- Sketching: the user can trace sketches directly on the Drafting Board
without any correspondence with the entities and shapes contained in the data
base of ASA. This function implies all the possibilities supplied by the 2-D
vectorial drawing packages: drawing of the main geometrical entities, editing

279

Colajanni, et al

and so on.

- Parametric Drafting; this functionality is generated by the juxtaposition of
the modules QRS, PAOE, PGS and Drafting Board and consists in the
possibility of executing parametric drawings according to the last tendencies
of the variational CAD.

- Case Generation and Case Reasoning: the activity of Case Reasoning
involves a great part of the system. The Case Engine manages the historical
memory and presents, according with the input keys, the possible design
solutions (typically scenes). In order to fit the proposed scenes to the
dimensions of the design problem they have to be represented in parametric
form. This role is fulfilled by the Parametric Drafting, The possibility of fitting
the scene to the design context is entrusted to the union of the constraints
implied in the scene with those already existing in the design context. The
triggering of routines searching consistent solutions produces the necessary
fitting of the scene to the context. The start proposal can be interactively
modified by the user or employed as a further key to a subsequent process of
search to a higher detailing level. For instance, if the first solution was
proposed at wire frame level, the refinement process produces a solution with
details at a geometrical level.

- Constraint Posting and Consistency Checking; these functionalitics are
related directly to the QRS module and allow the user to pose new
constraints to the design parameters, in addition to the ones posed each time
by the system.

- Abstraction: the functionality of abstraction, when it is activated, proposes
to the user possible interpretations of the sketches present on the Drafting
Board. The abstraction process is well defined as it provides only one flow of
information from the Drafting Board to the Design Board and a local control
limited to the interior of the Abstract Engine.

In the following the main informative flows present in the system is
described. By informative flow we refer to the interaction between two
modules that can be generated both by the transit of information and by the
access to specific functionalities (see Figure 1).

Twenty-two main flows can be identified:

- Flows (1-2-3-4-5-6-7): they represent the interaction of the user with all
the modules of the system. The temporal sequence of the interactions
accomplishes the global control of the elaboration. Through these channels the
user can reach the interface functions of every module allowing him to have
access to the data and/or to activate the functionalities.

- Flows (8-9): they represent the communications between Drafting Board,
Abstraction Engine and Design Board. Flow (8) implies the abstraction
procedure of lines sketched in the Drafting Board while flow (9) represents
the instantiation of the interpreted datum on the Design Board, which in turn

280

An Interactive Assistant to Designers

is connected dynamically to the corresponding lines on the Drafting Board.
- Flows (10-11-19-20): they pertain to the functionalities of generation and
definition of a casc. After the activation of a case scarch through a key, the
Case Engine generates on the Design Board all the instances of the object
present in the particular case retrieved and on the Drafting Board their
geometrical representation linking the two. At the same time the QRS
generates all the parameters and their reciprocal constraints.

- Flows (12-18): flow 12 represents the bi-directional interaction between
QRS and Design Board. The QRS finds in the Design Board the instances of
parameters and constraints related to a certain design moment. Flow 19 allows
the updating of the parameters of the design unit when the set of constraints
is made consistent (ie when the procedure of the consistency checking is
triggered or a possible instance of the design geometry is searched). Flows are
bi-directional as the user can vary directly both parameters and constraints.
- Flows (13-14-15-16-17-18-21): this considerable set of flows is generated
by the typical activities of the functionalities of parametric drafting present in
ASA: Flows (13-14-15-21) arc gencrated by the activity of instantiation of
forms and parametric objects present in the Drafting and in Design Board.
The parametric nature of the objects requires the contemporary generation
of the parameters and the relative constraints nets.

- Flow (22): represents the dynamic link between the entities present in the
Drafting Board and the related class instances in the Design Board. The
dynamic link consists of the possibility of an asynchronous updating of the
attributes in the Design Board depending on variations in the corresponding
entities in the Drafting Board and vice-versa.

AN EXAMPLE

An example of a work session exploiting ASA's capabilities as an
architectural assistant follows. The exposed sequence is only one of the
possible way of exploiting ASA s capabilities.
- The designer sketches a scheme of both floors of a dwelling in the
Drafting Board, using the interface and the drawing tools of the Board.
- The Abstraction Engine interprets the sketch translating it to a
configuration of polygons.
- Conceptual images of the polygons are created in the Design Board. A
wire-frame plan of the floors is returned on the Drafting Board.
- The designer assigns a value in the class "FUNCTIONAL SPACES" to
the polygons of the scheme on the Drafting Board toget—her with the
accessibility requirements.
- The Abstraction Engine derives from the wire frame sketch, as already
interpreted by the Design Board and from its semantics, preconditions and
specifics corresponding to the case on the Boards; the QRS constructs the

281

Colajanni, et al

constraint set that will be handled by the CMS.

- The Case Engine searches in the Case Memory the most approaching
cases, according to the similarity metrics, the requirements of the case; the
designer chooses the one on which he will work.

- Changes in the retrieved case are operated in the Drafting Board through
the drawing tools allowed by the interface; QRS and PGS control and manage
the consistency of the proposed scheme.

- The further specification of the scheme from the wire frame state to the
executive level is carried on with the help of the PAOE.

Now we will describe a practical example of a session. On the Drafting
Board a sketch is drawn. The Abstraction Engine gives back a plan consisting
of rectangles and the adjacency graph (right of Figure 4). A semantic is given
to the polygons of the wire-frame whose representation is both in the Drafting
and in the Design Board. The accessibility conditions are input either directly
on the adjacency graph (bold lines in Figure 4 right) or on the wire-frame
plan (Figure 4 left).

Figure 4. To the plans already encoded as set of polygons and given a
semantics as functional spaces the accesibility conditions are
added; the accessibility graph is generated as a subgraph of the
adiacency graph

The Case Engine searches the cases satisfying the preconditions and the
constraints that the abstraction Engine has in the meantime derived. The

selected cases in the Case Memory of row houses already implemented are
18.

282

An Interactive Assistant to Designers

AutoCAb

Figure 5. The Case Retrieved by the Case Engine

Piano O Orto Snap -

L]
v T L1
ad ™ L]
u [¥] « w
x i
Y —— A .
N t+ 4 4
TI = =Y | i=hE
| : A jia B S
" tt T w
—— s
v L [T -
l‘ « “ R
P i
LI]
Pone 4 e 4t P ¢ P o

The Wire-frame Representation of the Case Returned as

Figure 6.
Modified by the Designer

283

Colajanni, et al

(Porta-Finestra tipo 1 \
4 N/ Yy
Cl

lasse: 31.6 Rappresentazioni:
Identificatore dellistanza Esecetive: v
Porta-Finestra T

Parametri:
Estorsi, accossari:
L: larghezze «
- g i 2
b altcrza Fiante
Ol 150 alhiin prwin . ¥ ' L
x

=
—

L3
el

i

Sezions
n
- R,
‘e D4
Lo T P —
Oulink pmeoarn gueny s x| v
L . ., 5
& distaars iafisso dallestcrno
Dewiia e
[T YN] Simbobica:
16: largherza antsl, 12: anta?, ..
Pomini 48, L m.
Scrione:

 abirs mguiver emte s apibde.
:—p-—‘:--l-.‘h—‘-m

4

L

Attributi: Propal
Tevola 0: Fasty
Tavla 2 X 1 "

Tavola 3:i

Tavola &

Pactioolare costrattiva:
Codice 1: Sup-Fimcstra
Cotice 2:

(= J Y,
N /

Figure 7. The Card of a Technical Element

Imposing the specifics leads to a further selection of six cases which, when
presented to the Drafting Board lead the designer to choose the case n. 23
(see Figure 5) for further elaboration. Interactively from the Drafting Board
the scheme is modified as in Figure 8 (left), always under the control of QRS.
Eventually on the Drafting Board a technological semantic is given to the lines
(Figures 6 right and 7) in order to allow the PAOE, with the help of PGS, to
instantiate the architectural objects necessary to give the designed plan an
executive representation (Figure 8).

An Interactive Assistant to Designers

So

Piano 0 P] Picno +1

Figure 8. The Final Output: The Designed Plans are Fully Instantiated

CONCLUSIONS

ASA is a tool without pretensions of creativity but tries, through the
connection of existing functionalities to extract from the existing functionalities
to partially automate the work of a conscientious assistant. Its main feature
is the continuous interaction between Drafting and Design Board, that is the
immediate conceptualisation of every object drawn on the Drafting Board,
drawing on the functionalities of the various modules. Starting from its actual
capabilitics, much work can be done in order to exalt some virtual
possibilities, for instance, to directly entrust it with some classes of updating
operations via a fit extension of the similarity metrics, and an enhancement
of the capabilitics and the collaboration of QRS, PAOE and PGS.

References

Colajanni, B, M De Grassi, M Di Manzo and B Naticchia (1991), Can
Planning Be a Research Paradigm in Architectural Design, Proceedings of First
International Conference on Artificial Intelligence in Design, Edinburgh.

Davis, E (1987), Constraint Propagation with Interval Labels, Artificial
Intelligence 32, pp. 281-331.

Giretti, A, and B Naticchia (1992), ASPIDE: A Constraint Oriented
Approach to Geometrical Modelling in Architectural Design, C1.B. World
Congress, Montreal.

Gossard, D C, R P Zuffante and H Sakurai (1988), Representation

285

Colajanni, et al

Dimensions, Tolerances and Features in MACE System, TEEE Computer
Graphics & Applications, March, pp. 51-59.

Hayes, P J (1979), The Logic of Frames, in Frame Competitions and Text
Understanding (D. Metzing ed.), Walter de Gruyter and Co., Berlin, pp. 46-61.

Kolonder, J L, and C K Riesbeck (1986), Experience, Memory and
Reasoning, Lawrence Eribaum Asoociates, Hillsdale, New Jersey.

Kolonder, J L (1992), An Introduction to Case Based Reasoning, Artificial
Intelligence Review n.6, pp. 3-34.

Kurnar, V (1992), Algorithms for Constraint Satisfaction Problems: A
Survey, Al Magazine, Spring, pp. 32-44.

Roller, D (1991), An Approach to Computer Aided Parametric Design,
Computer Aided Design, vol.23, n.5, June.

Slade, S (1991), Case-Based reasoning: A Research Paradigm, Al
Magazine, Spring, pp. 42-55.

c. 1993, Management of Information Technology for Construction, K. Mathur
et al (Eds), World Scientific Publishing Co., Singapore.

286

