Capturing and Structuring the Meaning of Communication in the Building
and Construction Industry

WIM BAKKEREN!

PETER WILLEMS?

ABSTRACT

Integration of the computer applications used in the building industry requires
information systems that support the communication between these
applications. Currently this communication is realised via human interpretation
and understanding, An important question in this context is: "what makes
communication meaningful?”. The meaning of communication has two
aspects: (1) the intention: the general idea behind the communication, and (2)
the extension: the set of things to which the communication applies. This
paper describes these aspects of meaning and mechanisms used by human
beings to define meaning. To enable information systems to support
communication the intention and the extension must be represented in a
computer interpretable form. The representations should be manageable,
reusable and extendable. This requires structuring of the representations,
which can be achieved by modular modelling and layering. This paper
describes these stucturing mechanisms.

Key Words

meaning of communication; representation of meaning; structuring
representations; modularity; layering

INTRODUCTION
Building projects are carried out by participants from different disciplines.
dhese participants are usually not employed by the same company.
‘glonsequently the excecution of a building project involves many different
‘€ompanies, usually in a new combination. The realisation of good
communication in such projects is a difficult task to achieve. Therefore the
£ «ommunication makes usc of standardised classification systems, regulations,
2 qand codes.
Nowadays most participants in a building project perform their activities
ided by computers. In contrast, the communication between particpants is
ill carried out with conventional media (eg, drawings and specifications). The

atics Digital Library http://itc.scix.net/

paper w/&19

Construction In
—

Assistant Researcher, Delft University of Technology, Department of
Civil Engineering, PO Box 49, 2600 AA Delft, The Netherlands.

TNO Building and Construction Research, Department of Computer
Integrated Construction, Delft University of Technology.

435

Bakkeren and Willems

process of interpreting and understanding the exchanged information is carried
out by human beings. This is time consuming and error prone.

To solve the problem described above the exchange of information has
to be supported by information systems too. This can only be achieved when
the computer aided communication, just like conventional communication, is
carried out in a standardised way, eg, according to the standard for the
exchange of product model data (STEP). This standard is based on the
application of product models, which are collections of all relevant data
concerning the product at hand.

The development of standards like STEP is necessary for a better usage
of information systems in manufacturing processes. Currently the research
community is not only trying to answer the question "which information is
cxchanged in manufacturing processes?” But also "how to structure the parts
of standards for information exchange to keep them manageable, reusable,
and extendable?". To answer this second question is, for instance, one of the
main tasks of the ESPRIT project PISA. This paper, which tries to contribute
to the answer consists of two parts. Firstly, it deals with human
communication in general. To support communication with information
systems a clear understanding of it is nessecary. Secondly, it elaborates on the
principles that information technology (IT) and computer science offer us to
implement the required aspect of communication support. The first part of the
paper presents ideas from philosophy, linguistics, artificial intelligence, and
database engineering. The second part presents the results of research carricd
out at the department of computer integrated construction (CIC) Of TNO
Building and Construction Research in cooperation with the Department of
Civil Engineering of the Delft University of Technology.

THE MEANING OF COMMUNICATION

A product model enables information systems to support communication.
To achieve this the answer to the question: "what makes communication
meaningful to the participants in a manufacturing process?: Has to be known.

An Inquiry into Meaning

The most elementary way of communication between human beings is
speech. This communication only makes sense when the spoken words have
meaning for those who communicate. The meaning of a word has two aspects
(Mattessich, 1978 and Sowa, 1984). The first aspect is the extension of the
word, which is the set of all things to which the word applies. The extension
of the compound noun "office building”, for example, is the set of all existing
office buildings. The second aspect is the intention of the word, which is the
general idea behind it. This aspect corresponds to the dictionary definition of
a word and is formed by perception of the things that belong to the extension.

436

Capturing and Structuring the Meaning of Communication

The intention of the compound noun "office building", for example, is
something as "a building in which business affairs are carried on" (derived
from Webster 's New Twentieth Century Dictionary).

Communication makes use of symbols, eg, spoken or written words,
gestures, and drawings. The intention of a symbol is also called the concept
and the extension is also called the referent. The things that belong to an
extension are called elements of that extension. This paper presents symbols
in italic face between double quotation marks ("symbol"), concepts with small
capitals and single quotation marks (*concept"), extensions between single
quotation marks ("extension"), and elements in italic face between single
quotation marks ("clement"). :

The relation between a symbol and the things to which it applies is an
indirect relation established via the concept (Ogden, 1969 and Sowa, 1984).
Perception maps an observed thing to a person's concept and expression, eg,
speech, maps the concept to the symbol. This idea is illustrated with the
meaning triangle, as shown in Figure 1 (Ogden, 1969). In the opposite
direction the relation is indirect too: when a person hears or sees a symbol
interpretation maps the symbol to the person's concept and understanding
maps the concept to the referent.

Concept

Symbol Referent

“stands for
Figure 1. The Meaning Triangle

Things arc often called entities or objects. In the context of IT both
"entity” and "object” can be defined as "anything about which information
can be acquired or used" (derived from (Fulton, 1992a)). It is important to
notice that "entity” and "object" (as used in this paper) apply to real-world
things and not to entities in EXPRESS schemata, entities in entity-relation
diagrams or to objects in object-oriented programming languages. According
to ontology an entity has properties (Mattessich, 1978), which together
determine to which extension the entity belongs, ie, the properties characterise
an entity. The intention implies these properties. An entity that matches the
description given by the intention is an instance of that intcntion. The set of

437

Bakkeren and Willems

all instances of an intention is called the denotation of that intention (Sowa,
1984).

This section starts with the question "what makes communication
meaningful?". As described above, the intention and the extension together
make communication meaningful. However, intentionally correct
communication is possibly false. The sentence "this paper is written on a MS-
DOS computer” is meaningful but false (this paper is written on a
Macintosh). The sentence *this section deals with the meaning of symbols™,
on the other hand, is not only intentionally correct but also has extensional
meaning. The sentence applies to a situation in the real world: the sentence
is true. '

The Representation of Intentional and Extensional Meaning

To enable information systems to support communication the intention
and the extension have to be made explicit. In other words, the real-world
entitics to which the communication applies and the general idea behind it
have to be represented in a computer interpretable way. The intention can be
represented with a conceptual schema, which represents the definition of
properties that must be true for all instances of the intention. The instances,
which together form the extension, are represented with data that have to
conform to the conceptual schema. The conceptual schemata together with the
data enable the information system to provide information to users of the
system. This information is, as in human communication, provided with
symbols, eg, tables, graphs, or text shown on the display or printed on paper.

The notion of a conceptual schema and corresponding data can also be
found in the product modelling approach of STEP. Figure 2 shows an
EXPRESS entity that represents the concept "office building”. The data
corresponding to this EXPRESS entity represent existing or possible office
buildings. The EXPRESS entity and the stored data enable the exchange of
information between computer applications with, for example, a STEP
physical file. The information provided by the physical file is structured
according to the EXPRESS entity and applies to the data stored in the
database. For the interpretation of the physical file, the EXPRESS entity is
needed.

The distinction between a conceptual schema and data that represent
(existing or possible) real-world instances is the basis for the
ANSI/X3/SPARC Reference Model for DBMS Standardization (Burns,
1985). This reference model consists of two dimensions of which the
intention/extension dimension is one. The conceptual schema and the data
each belong to a separate layer of this dimension, which is also part of the
information resource dictionary system (IRDS) framework (irds). A layer on
the intention/extension dimension contains the (IT-)instances of the layer

438

Capturing and Structuring the Meaning of Communication

directly above and at the samec time these (IT-)instances are the
(IT-)intentions for the layer directly beneath. The lowest layer, called the
application layer in the IRDS framework, contains real-world entity
representations, the so called application data. The layer directly above this
layer, the IRD layer, contains conceptual schemata, ie, the intentions for the
application layer. A conceptual schema itself is considered to be an IT-
instance of a dictionary schema, which is a schema that describes other
schemata (a meta-schema). The layer that contains the dictionary schema is
called the IRD definition layer.

ENTITY office_building;
SUBTYPE OF (building);
name: STRING;
business_affair: BUSINESS_AFFAIR;

END_ENTITY
\

IT-instance of

|T-intension of IT-denotation of

office_building Z__IT- extension of

Figure 2, The Meaning Triangle Applied to the STEP Product Modelling
Approach

When the intention/extension dimension is applied to the STEP product
modelling approach the IRD definition layer contains a meta-schema that
specifies the properties of EXPRESS schemata. This meta-schema is,
however, missing in the current situation. The semantic unification meta-
model (SUMM) (Fulton, 1992a) is an effort to provide a model type that is
powerful enough to model other models. Currently the SUMM has no
modelling language attached to it (Fulton, 1992b) but a SUMM language
would enable the use of a SUMM meta-schema. SUMM schemata themselves
should be instances of a meta-meta-schema. This meta-meta-schema can be
a SUMM schema too, because the SUMM is powerful enough to model other
models. The meta-meta-schema is on the fourth intention/extension layer,
called the IRD definition schema layer (see Figure 3).

439

Bakkeren and Willems

IRD meta-meta-models

Definition e.g. SUMM schema of SUMM schemata
Schema

layer

{IRD Definition meta-models or model types

layer €.g. SUMM schema of EXPRESS schemata
IRD conceptual models

layer e.9. EXPRESS schema of building data
Appﬁcaﬁon product data

layer e.g. data of existing or possible building

Figure 3. Four intention/extension layers as defined by the IRDS applied
to the product modelling approach of STEP

Human Structuring of Intentional Meaning

A concept is a general idea that human beings share about real-world
entities and implies the properties of these entities. Such general ideas derived
from the perception of real-world entities are abstractions of reality. The
formation of a concept can be carried out by so called abstraction
mechanisms, which enable the definition of a concept in terms of other
concepts. This section describes two abstraction mechanisms. The first
mechanism is the gencralisation/specialisation mechanism, which enables the
usage of general concepts in the definition of specialised concepts. The second
mechanism is the aggregation/decomposition mechanism, which enables the
usage of simple concepts in the definition of complex concepts.

Generalisation and Specialisation

A concept defines its denotation by describing the properties that must
be true for all its instances. When some instances have properties in common
that distinguish them from the other entities in the denotation then these
entitics form a subset of the original denotation. The concept that defines the
subset is a specialisation or subtype of the original concept and the original
concept is a generalisation or supertype of this subtype.

Specialisation of a concept results in the reduction of the concept
denotation, which is the resuit of adding the differentiating properties to the
concept or of constraining the possible values a property can have. The
specialised concept has a smaller amount of instances than its supertype but

440

Capturing and Structuring the Meaning of Communication

it describes its instances more accurately (Sowa, 1984).

The G/S-mechanism can be used to definc a concept. This is the
Aristotelian way and uses a genus and differentiac (Sowa, 1984). The genus
is the supertype of the concept that is defined and the differentiate are the
properties that distinguish the new concept from other subtypes of the genus.

Aggregation and Decomposition A

According to the ontology entities have propertics (Mattessich, 1978). A
concept defines these properties, ie, a concept defines a collection of
properties that characterise the instances of the concept. Therefore, a concept
is considered as an aggregation of property definitions. The concept
'BOOK", for example, is an aggregate of properties of books such as
*TITLE®, YEAR PUBLISHED', ' NUMBER OF PAGES’, 'AUTHOR",
etc. A property that is part of one concept can be an aggregate itself. The
property 'AUTHOR' for instance is an aggregate of the properties
*NAME', 'GENDER', 'BIRTH DATE", etc.

Aggregating propertics and concepts results in a collection of related
concepts, called a schema. A schema describes the properties of the instances
of the concept and the relations that usually occur between these instances
and instances of other concepts. This way of concept definition corresponds
to Wittgenstein's method (Wittgenstein, 1963). A schema defines a concept
by describing the family resemblance of the instances of the concept.

A special form of aggregation is association. Association is collecting
instances of the same concept into a group that is considered as an instance
of another concept. The concept "fleet” for instance refers to collections of
instances of the concept "ship”.

When the entities in an aggregation have mutual relations the aggregation
is called a system (Mattessich, 1978), a composition of entities. A concept that
refers to systems consists of concepts that refer to the parts of the systems.
The opposite of aggregation, association and composition is decomposition,
which can be used to model complex systems. Using decomposition, the
concept about systems is divided in concepts about the parts. This can be
continued until the desired level of detail is reached.

REPRESENTATION SYSTEMS

For information systems to be able to support the communication in
manufacturing processes computer interpretable representations of the
intention and the extension are needed. Representation systems provide the
functionality to realise this. They provide functionality at a conceptual level,
ie, a level concerned with human perception and thought, and at an
implementation level, ie, a level concerned with the storage of data in a
computer. The first part of this section describes currently available

441

Bakkeren and Willems

mechanisms to structure representations. The second part deals with
structuring mechanisms that can help to build manageable representations for
the complex problems the product modelling community is facing today.

Available Functionality

Representation systems provide several mechanisms to structure
representations. The mechanisms are: (1) instantiation, (2) grouping, (3)
sharing, and (4) inheritance.

Instantiation

Probably the most important mechanism available in all representation
systems is instantiation. Through instantiation two levels of representation can
be distinguished: (1) the level of stored data, the instance level, and (2) the
level of the description how the data should be stored, the template level.
These levels have a relative nature: a template level may be an instance level
with respect to a meta-template level, ic, a level where the template level is
described.

Obviously, the instantiation mechanism realises the distinction between
representations of the intention and of the extension. Instantiation has,
however, not only conceptual but also implementation aspects. It is the
process to store a unit of data, called a class instance, according to a
particular template, called a class template. A class instance has a unigue
address, which can be used to refer to, and stores an indicator to the class
template it is an instance from. Further it allocates storage slots and possibly
occupies them. The contents of a storage slot may change during the class
instance's existence. The changes should always be in agreement with the
corresponding class template. A class instance usually does not change its type
(the class template correspondence) or increase or decreasc its number of
storage ‘slots.

Grouping

The second structuring mechanism is grouping. Grouping assembles a set
of simple constructs into a complex construct. This section describes four
kinds of grouping: (1) binary-string/bit grouping, (2) attribute/binary-string
grouping, (3) class/attribute grouping, and (4) schema/class grouping.

The most basic form of grouping is binary-string/bit grouping. This
mechanism groups binary digits (bits: ones and zeroes) into a binary string of
a certain length. Such a binary string is an instance of a particular binary-
string template and represents a value (g, C, 4, 3.234, or TRUE). The
following four binary-string templates, or basic types, are distinguished:
(1) character template, (2) integer number template, (3) real number
template, and (4) Boolean template.

442

Capturing and Structuring the Meaning of Communication

The second kind of grouping is attribute/binary-string grouping. This
mechanism groups a number of binary-string instances into an attribute
instance. The number of binary-string instances an attribute instance may
contain is defined through its minimum and maximum cardinality at template
level. Several forms of attribute/binary-string grouping can be distinguished,
cg, array, list, bag, set, queuc, stack, tree, binary tree, and circular list. These
forms can be pre-defined as library templates instead of being part of the
representation system. Attribute /binary-string grouping facilitates conceptual
association.

The third kind of grouping is class/attribute grouping, which is closely
related to conceptual aggregation. It enables the collection, into one template,
of representations of those properties that characterise certain entities in the
Universe of Discourse (UoD). The mechanism groups scveral attribute
templates into one class template. The corresponding class instances are
collections of attribute instances (see Figure 4).

T
Lo sey
(Ve eoeR ok, oot
ia:a " Vg i
¥ - v

instance level template level

Figure 4. Class/attribute grouping. The left part shows the grouping at

instance level. The right part shows the corresponding grouping
at template level.

The fourth kind of grouping is schema/class grouping. At the instance
level this mechanism groups class instances into a schema instance. This
grouping corresponds to a grouping of class templates into a schema template
at the template level. The mechanism is closely related to Wittgenstein's
definition of concepts with schemata.

Sharing
Sharing is another mechanism available in most representation systems.

443

Bakkeren and Willems

The mechanism is an important technique to reduce redundant data and
enables relations between instances if sharing is also conceptually appropriate,
This paper deals with two kinds of sharing: attribute sharing and class sharing.
At instance level the objective is value sharing while at template level sharing
supports inheritance (without redefinition).

Attribute templates that must be shared between several class templates
can be grouped in a separate class template to refer to. This form of sharing
implements sub-type relations between classes.

Attribute instances that must be shared between several class instances
can be grouped in a separate class instance to refer to. The formation of this
separate class instance is described at the template level (see Figure 5).

instance leval template lovai

Figure 5. Sharing of Attribute Instances

Class templates that must be shared between several schema templates
can be grouped in a separate schema template to refer to. This form of
sharing implements sub-type relations between schema templates.

Class instances that must be shared between several schema instances can
be grouped in a separate schema instance to refer to. This form of sharing
implements library instances. There is a strong resemblance with the sharing
of attribute instances as described above.

Inheritance

Another mechanism is inheritance. Inheritance can be based on the data
sharing principle described above as long as the inherited data can be used
without modification. If modification is necessary, part of the shared data must

444

Capturing and Structuring the Meaning of Communication

be copied and modified. This section describes attribute inheritance, which can
be applied at template level as well as instance level.

Attribute-template inheritance is based on the sub-type relationship
between class templates. The descendent class template inherits all attribute
templates from its parent class templates and may introduce changes to these
attributes. Changes should impose more constraints on the value domain or
cardinality defined by the attribute template.

Attribute-instance inheritance is based on the sharing of attribute
instances. A descendent class instance inherits its attribute instances from a
parent class instance. It may substitute the inherited value by explicitly
specifying its private value.

Sharing and inheritance at the template level facilitate conceptual
specialisation. Most representation systems do, however, not support definition
of concepts with the genus-and-differentia mechanism. Also generalisation is
usually not fully supported.

Extended Functionality

The mechanisms described above are available in most representation
systems. They do, however, not suffice for the formation of manageable
representations. Therefore a need for mechanisms that fulfil the requirements
of the product modelling community exists. These mechanisms can be divided
into two groups: mechanisms for modularity and mechanisms for layering.
Modularity enables the division of complex represcntations into smaller,
independent parts. Layering enables the set up of a framework in which the
modular parts can be placed.

Modularity

Within the scope of single schema templates traditional modelling
techniques have sufficient capabilities to describe a UoD adequately. Most
methods do, however, not support a schema-template hierarchy and inter-
schema template referencing. How to manage a set of distinct schema
templates to behave as a single schema template is best understood by
reasoning the other way round: how to break down a monolithic schema
template into a set of module schema-templates. On the instance level the
General AEC Reference Model (GARM) (Gielingh, 1988) facilitates the
decomposition of schema instances into a set of module schema-instances. To
illustrate this mechanism this section uses the problem of parts and assemblies
at the instance level. Thereupon the applicability of the mechanism at the
template level is analysed. '

In a monolithic model parts are linked directly to each other to create an
assembly (see Figure 6). Besides the impossibility to break down this structure
into manageable pieces, this type of modelling offers no facilities to

445

Bakkeren and Willems

communicate with the schema instance 's environment.

assembly —_—
(@) (®)

L1]
connects /is_connected_with

instance level template level

Figure 6. Monolithic modelling. The left part shows an example of parts
[circular objects a.h] directly linked to compose an assembly
[blended rectangular]. The right part shows the corresponding
schema template.

A primary requirement to break down a structure into smaller segments
is a mechanism to attach or detach the connections between parts. This can
be achieved by the definition of explicit connections that consist of two
components called ends, which each represents one side of the connection
(see Figure 7). A proper connection consists of two mating ends.

interfaces_through
IC]

~

from

instance level template fevel

Figure 7. Modular Modelling

An assembly as described above can be broken down into sub-assemblies.
The mated ends offer possible intersection points. To recover the original
assembly structure information is needed concerning which-end-mates-which-

446

Capturing and Structuring the Meaning of Communication

end. This information can be collected at the assembly level in a template
assembly-end, which collects the dangling ends (see Figure 8). Two assembly-
ends can compose an assembly connection.

; : o) roeus)

instance level template level

Figure 8. Inter-assembly Connectivity

The result resembles a one layer decomposition. The GARM extends this
recursively into a multi-layer decomposition. This step is postponed here. First
the question is answered if this mechanism, meant to be used on the instance
level, is also applicable to the template level.

When applied to the template level part maps to class-template and
assembly maps to SCHEMA-TEMPLATE (see Figure 9). MATED-ENDs
represent relations between CLASS-TEMPLATES. To understand a particular
end the relation must be directed. A SOURCE-END represents an attribute
template referencing another CLASS-TEMPLATE, and a TARGET-END
may be viewed as an address to reference the attached CLASS-TEMPLATE.
DANGLING-END:s represent the schema template interface. A DANGLING-
SOURCE-END represents an external reference (or private interface map
(Kirkley, 1991)) and a DANGLING-TARGET-END represents a global
address (or public interface map (Kirkley, 1991)) for the attached CLASS-
TEMPLATE.

The GARM modular network ideas can also be applied to the
generalisation/specialisation ~ dimension. Consequently, the CLASS-
TEMPLATE-ENDs can be applied in various ways, either as class template
relations or as sub-typing relations. It seems obvious to make a clear
distinction between these two applications. Moreover, there are other
conditions that justify explicit grouping of CLASS-TEMPLATE-END:s, eg, the
dimension concept as mentioned in the ISO-STEP framework document

447

Bakkeren and Willems

(Kirkley, 1991). The visibility of a particular class template in a certain
dimension depends on the fact if an explicit target-cnd has been defined for
that dimension.

Cre 117 % un @

template leve! meta template leve!

Figure 9. Inter-schema Template Connectivity

As the previous paragraphs show, the mechanism of the GARM can also
be applied at the template level. As said above, the GARM applies the
mechanism recursively, which results into a decomposition tree. Ignoring the
particular semantics of the GARM functional-unit and technical-solution con-
cepts, the so called Hamburger diagram is an example of modularity in the
decomposition dimension (see Figure 10). The decomposition tree can now
be assembled from separate modules each spanning one decomposition level.
Modules can be plugged in or out.

-
a j A@

(e (C2 (e AN [d2)

instance level template levei

Figure 10. Hamburger diagram. An example of modular decomposition.
Parts are symbolised by semi circles with a flat bottom side and
assemblies by semi circles with a flat top side.

Capturing and Structuring the Meaning of Communication

The recursive GARM approach can be upgraded to the schema-template
level. Now, the decomposition of a high level class template can be elaborated
in a separate schema template and afterwards be attached to the high level
class template. This technique is used in a model for the exchange of road
design information: the Road Model Kernel (Willems, 1990).

Layering

Modularity is a necessity for structuring schema templates in a framework,
however, modularity in itself is not sufficient. It will not prevent a tremendous
number of schema templates entangled in a huge spaghetti-like structure.
Layering defines a structure of place holders or slots that can be filled by one
or more schema templates.

An important design decision applies to the question if a layer may host
more than one schema template, and if so, how those schema templates
should interrelate. Obviously, a one-to-one correspondence of layer and
schema template is unambiguous and simple. However, this may result in
large schema templates. Schema-template decomposition, as described in the
previous section, could solve that.

A single layering system will not be feasible. Therefore a framework is
needed with several layering dimensions. Such a framework can be
represented as a multi-dimensional table. Each table cell represents a slot,
possibly hosting a schema template (see Figure 11).

layering dimension A

7] L4 7
L =T
I et tiy !
J A 8 L.
KT hTaYaYal
A /,‘ J(,)g, Is\ 7727 7 L7, rd
emplatd’™
€
NELLANELLLY 777
NG latd* ¥ | Latd
Bl a0\ Nompa]
-g)‘lexfil,f\f/‘}lyy\ 4){k’ 177, v
£R ’d”."‘.a)\ h
=Kl 6 T
3 aYavaral e 77 $

Y

Figure 11. Multiple Layering System

449

Bakkeren and Willems

Schema templates must not refer to each other directly. This would
contradict the assumed plug-in architecture characteristic for layering.
Therefore, schema templates must refer to each other indirectly via a neutral
intermediary, which is part of the layering system: the interfaces between the
layers. This principle harmonises quite well with the specification versus
implementation aspects. The framework itself contains the specifications, while
an individual schema template composes the implementation for a specific
slot. Figure 12 shows a framework including layer interfaces. The inter-schema
template relations are cut into two trajects: from source schema template to
interface and from interface to target schema template.

5

leyering dimension B
Grg]
.

EEI LR LY ELEDE

/

Figure 12. Layer Interfaces

CONCLUDING REMARKS

This paper presents results from rescarch carried out at the department
of Computer Integrated Construction (CIC) of TNO Building and
Construction Research. The research is carricd out in the context of several
projects, like ESPRIT projects, projects for the Dutch Ministry of Transport,
Public Work and Water Management, and a CIC project in which several
PhD students of the Delft University of Technology participate. The ongoing
development of a computer tool that is suited to be used in these different
projects forms an important part of the activities at the CIC department of
TNO. The ideas presented here a part of a contribution to the ESPRIT
project PISA. Several aspects of the ideas are also used in the development
of the computer tool mentioned above. Furthermore are they used in the
different PhD projects mentioned above.

450

Capturing and Structuring the Meaning of Communication

References

Burns, T, Fong, E, Jefferson, D, Knox, R, Mark, L, Reedy, C, Reich, L,
Roussopoulos, N and Truszkowski, W (1985), "Referencc Model for DBMS
Standardization,” Tech. Rep., NBSIR 85-3173, May.

Fulton, J A, Zimmerman, J, Eirich, P, Tyler, J, Burkhart, R, Lake, G F,
Law, M H, Menzel, C, Speyer, B, Stump, R and Williams, A (1992a), "The
Semantic Unification Meta-Model: Technical Approach,” Tech. Rep., ISO
TC184/SC4/WG3 N175, Released, October.

Fulton, J A (1992b), "Enterprisc Integration using the Semantic
Unification Meta-Model.” in Enterprise Integration Modeling, Petrie, C.J.,
The MIT Press, pp 278 - 289.

Gielingh, W F (1988), "General AEC Reference Model," chh Rep,,
P.O. Box 46 2600 AA Delft, the Netherlands, BI-88-150, October.

Information Resource Dictionary System (IRDS) Framework.
International Standard, June 1990.

Kirkley, J R and Seitz, B K (1991), "STEP Framework, Concepts and
Principles,” Tech. Rep., March, draft document.

Mattessich, R (1978), Instrumental Reasoning and Systems Methodology:
An Epistemology of the Applied and Social Siences. Vol 15, Theory and
Decision Library. P.O. Box 17, Dordrecht, Holland: D. Riedel Publishing
Company.

Ogden, C K and Richards, I A (1969), The Meaning of Meaning: A Study
of The Influence of Language upon Thought and of The Science of
Symbolism., International Library of Psychology, Philosophy & Scientific
method. Broadway House 68-74 Carter Lane London: Routledge & Kegan
Paul Ltd.

Sowa, J F (1984), Conceptual Structures: Information Processing in Mind
and Machine., The systems programming series. Addison-Wesley Publishing
Company.

Willems, P H (1990), "The Road Model Kernel, Version 0.2," Tech.
Rep., TNO report, B-89-831, March.

Wittgenstein, L (1963), Philosophical Investigations. Basil Blackwell.

c. 1993, Management of Information Technology for Construction, K. Mathur
et al (Eds), World Scientific Publishing Co., Singapore.

451

