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ABSTRACT 
 
The number of lanes required for freeway design on an uphill road section is examined on a 
unified computational framework by integrating together vehicle characteristics, road 
geometry, traffic flow theory, and traffic compositions.   Four important parameters are 
introduced to characterize the formation and propagation of queues initiated by slow trucks 
on uphill road sections.  Important design criteria are derived and computed on physical 
bases to show the interesting interrelation among these factors on freeway design.  Typical 
examples are presented to illustrate the proposed computational framework in contrast to the 
conventional strategies recommended by the HCM guideline.  These criteria should be 
considered carefully by engineers to avoid recurrent traffic congestion initiated at certain 
locations of freeways where an uphill road section is to be constructed, rehabilitated, or 
widened for smoothing traffic operations.  Insufficient number of lanes in geometric design 
can seed a network with many ‘congestion’ sources, which can initiate traffic jams in peak 
traffic periods or when future traffic demand or volume thrives. 
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INTRODUCTION 
Driving in large metropolitan areas is no more enjoyable.  In addition to confronting with 
numerous confusing traffic signs along freeways and streets, one may experience traffic 
queues and traffic jams due to the presence of one or several slow moving vehicles, a rubber 
neck, and occasionally a vehicle accident blocking a lane or two.  Slow moving vehicles are 
usually trucks or other heavy vehicles.  They move slowly uphill when loaded, serving as 
possible sources for introducing queues and jams into a traffic network.  This cause phantom 
bottlenecks when traffic becomes relatively heavy [Gazis & Herman, 1992].  This phantom 
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bottleneck was further considered transient on flat freeways if it dissipates [Newell, 1998].  
The phantom bottleneck becomes recurrent when flow rate is high and traffic is mixed well 
with enough number of heavy vehicles.  The bottleneck problem arising from an uphill 
section can be a serious problem on highway design.  This problem may be solved by 
introducing design strategies and incorporating proper transportation planning, traffic flow 
characteristics and traffic composition analysis.   

In this paper, formation of queues or local congestion on uphill road sections is considered by 
computing the queue indicators mγ  and nsγ  respectively for steady and non-steady flow 
conditions.  In addition, the propagation of the queues, due to the presence of trucks in either 
a steady or a non-steady traffic stream, is characterized respectively by the queue growth 
indicators mΓ  and/or nsΓ .  The calculation of these parameters is carried out by taking into 
account the road geometry, flow conditions in traffic streams, traffic compositions, and 
vehicle characteristics.  Interesting functional relationships relating these physical variables 
to the parameters are derived.  These relations or criteria are then applied to determine the 
number of freeway lanes needed to accommodate daily traffic in some interesting scenarios.  
The computational results are then compared with the results found by following the HCM. . 

FORMULATION  
 
Consider an uphill road section of length L and a positive grade G, and a loaded truck with  
weight W  is climbing the section.  The rolling friction coefficient on the tir-road contact is 
given by approximately  

) v 1(01.0 β+×=f ,          (1) 
where the parameter β  is approximately equal to s/m  0.0223 [Mannering & Kilareski, 
1990].  One may estimate the climbing speed v  of a loaded truck with P  horsepower by 
equating the product and the speed and the frictional forces to the power, yielding 

v) vG 1(/)~1(100 2/12 βζ ++=+ WPG           (2) 
where quantity 100/~ GG = ; and quantity ζ   is the parameter reflecting the efficiency of a 
vehicle engine, ranging from 0 to 0.9 [Mannering and Kilareski, 1990].   Where the solution 
of speed 1v  for Equation (2) is found to be 
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where parameter WPG /)~1(100 2/12 ζα += .   It can be inferred from Equation (3) the speed 
drops approximately inverse proportional to the grade G if G becomes ‘large’.  The capacity 
per lane due to the presence of a loaded truck on a road section of a positive slope can be 
computed using 

)k exp(kvkvq 2
f λ−==          (4)  

The speed v  and concentration k  is in units of km/hr and 1km− .   It can be derived from Eq. 
(4) that the optimal (maximal) flow capacity is given by 2/1

fop )λ2(vq −= e  and the 
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corresponding optimal density is 2/1
op )λ2(k −=  (Gazis & Herman, 1992).   The flow rate q 

in the lane taken by a slow truck is determined by the speed of the truck.  The steady speed 
1v  of a fully loaded truck moving uphill isn’t always attained in few seconds because of the 

low acceleration power of the truck.  The fast drop of the road flow rate in the presence of a 
heavy vehicle can be inferred from the Eq. (4).  A slow moving truck acts as a moving 
bottleneck.  The main concern is that whether the effect spreads over the upstream or remains 
localized in the uphill portion.  In the rest of the paper, we are trying to show the reader that 
when ‘macroscopic’ flow conditions are right, the spread will occur; but it may remain 
localized when traffic nearby the uphill section is dilute enough to allow drivers to freely 
switch lanes.    

Consider a two-lane unidirectional road with an uphill section of length L .  Denoting the 
upstream concentration of upstream of the road as 0k , the concentration of the blocked lane 
due to the presence of a loaded truck as 1k , and the down stream of the ‘unblocked’ lane as 

2k .  The corresponding speeds at these regions are iv  (i=0,1,2).  The ‘unblocked’ lane is 
very persistent because of the lane switching due to impatient drivers in the blocked lane and 
the presence of trucks in the traffic stream.  Applying the number conservation law, one can 
find the rate of queue growth R  behind the moving truck (Gazis and Herman, 1992): 
 

]kk/[]2/)vv(k)vv(k[R 01122100 −−−−=          (5) 
 
Equation (5a) is the direct consequence of the vehicle number conservation [Prigogine & 
Herman, 1971].  The spill or the outflow of the moving bottleneck is represented by the 
second term in the numerator.  The out flow speed 12 vv −=v  is always greater than zero 
and is of the order of 10-20 km/hr.  It is a parameter depending on the traffic composition, 
driver behavior, vehicle characteristics, and other factors.  The queue length Q  built up when 
a loaded truck moves from the foot of a hill to the top of the hill is given by  
 

)]kk(v/[]2/k)vv(k[/Q 0112100 −−−== vL γ          (6) 
 
When quantity 1>γ , the queue spreads beyond the inclined section of the road; and the 
queue will continue to propagate upstream if another loaded truck joins the queue, depending 
on traffic compositions.  Let’s assume the truck population is θ  percent of the total traffic 
and η  percent (>50%) of trucks moves on the blocked lane.  Within a time duration 1v/L , 
the number of trucks arrives at a queue on average before it dissipates will be in the order of 

100 v/vk 2 Lηθ .   It becomes physically clear that if the following two conditions are 
satisfied simultaneously, namely; 

1>γ          (7a) 
1v/vk 2 100 >=Γ Lηθ        (7b) 

A queue will initiate and propagate.   
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NON-STEADY STATE FLOW CONDITIONS  
 
In deriving equations (5-7), we have implicitly assumed that traffic flow is steady.  There are 
situations in which the flow conditions can be worsened.  For example, when a queue grows 
beyond the length of an inclined road section, heavy vehicles arrive at the queue may be 
forced to slow down to a very low speed before moving uphill.  Then, it takes a ‘long’ time 
for a heavy vehicle to reach the desired steady speed 1v , depending on the acceleration 
power of the vehicle and the road geometry.  For a loaded truck, the acceleration power can 
be small in the neighborhood of 2m/s .30 even at low speed [Wright & Dixon, 2004].  In such 
case, one may estimate the queue length by considering two scenarios respectively.  The first 
is when the truck finishes climbing uphill before the steady state speed 1v  is reached; and the 
other is the steady state speed 1v  is reached somewhere in the uphill section.  Denoting the 
queue length ratio Q/L as nsγ , the accerleartion power of the truck as gα̂ , we can express it 
in terms of the vehicle and the road geometry parameters.    
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Where ev  is the final speed of the truck moving uphill, and 
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The condition parameter nsΓ  for more than one heavy vehicle to join the queue can be 
modified from Eq. (7b) to the following form: 
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If both parameters nsΓ  and nsγ  are greater than 1, then the queue behind the slow moving 
vehicle will grow indefinitely so long as the traffic compositions and the flow rate do not 
fluctuate. Otherwise, the temporary ‘phantoms’ of bottlenecks will appear and dissipate when 
traffic flow is relatively dilute or fluctuates at some periods.  One may easily notice that for a 
sufficiently long uphill road section ( 1LL >> ), both parameters nsΓ  and nsγ  can be written in 
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terms of their counterparts for a steady state flow and a contribution term due to the presence 
of a slow truck at the foot of the inclined section, namely: 
 

 ) v v,v,,ˆ( )v/(
vk 2

1,0110

100

fopns

ns

LkLkg βαφαγγ
τηθ

Φ+=
+Γ=Γ

     (10) 

 
Equations (8)-(10) can be easily programmed to an Excel worksheet to calculate parameters 

nsΓ  and nsγ  for different traffic and geometric conditions.  

DISCUSSIONS & EXAMPLES 
 
A queue, once initiated, will spread upstream and can potentially clog traffic at interchanges 
nearby the inclined section.  The first condition (7a) initiates a queue beyond the uphill 
section; and the second condition (7b) if satisfied will attach one or more trucks to the 
initiated queue and propagate it upstream.   The queue then will grow with time on average 
according to 1v)1(~ T−γ  under a steady flow condition; and its detail growing 
characteristics depend on the probabilistic process of truck arrivals.  Assuming a truck is 
moving 48 km/hr (30 mph), and γ  is 1.20, a queue will grow to 1.6 km in 6 minutes, which 
is long enough to affect traffic operation at nearby interchanges especially in an urban 
freeway system where interchanges are densely distributed.  This long-range effect can be a 
main mechanism triggering network level congestion, which once formed takes long time to 
dissipate.   

When heavy vehicle percentage is relatively high in a traffic stream, parameterγ  will 
reach its maximum value:  

 
)]kk(v/[)]vv(k[ 011100 −−=mγ          (11)  

 
The second term in the numerator of Eq. (6) becomes small compared to the first term when 
another truck gets on the ‘unblocked’ lane, leading to a ‘locked’ situation.  Using Eq. (4), we 
can express Eq. (11) in terms of the flow concentrations:  
 

)1k/k/(}1)]1/k(k k{exp[ 01
2
0

2
1

2
0 −−−= λγ m       (11a) 

 
Assuming parameter 9.0=ζ  and flow concentration op0 kk = =35 vplpkm (corresponding 
to the flow of 2450q0 =  pcplph in a level of service E) and computing mγ  in an Excel 
worksheet, one finds that the design parameter mγ  in table 1 for different accelartaing power 
of the truck and for different uphill grades 
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Table 1: Queue Indicator  mγ  
Grade 3% 4% 5% 6% 7% 8%

ζ 0.7 1.15 1.38 1.57 1.76 1.95 2.14
ζ 0.8 1.27 1.50 1.73 1.94 2.15 2.35
ζ 0.9 1.43 1.68 1.93 2.16 1.39 2.61  

 
If a spill velocity 8=v  km/hr is used, the quantity γ  is found to be .60, 1.01, 1.25, 1.44, 
1.62, and 1.80 for the slope of 3%, 4%, 5%, 6%, 7%, and 8% respectively.   Although γ  
varies when the spill speed changes, once a long queue is triggered when 1>mγ  or 1>γ , it 
will be very difficult to dissipate the queue when the truck composition is ‘high’, leading to a 
persistent ‘Phantom’ bottleneck [Gazis & Herman, 1992].  The threshold cθ  of the truck 
percentage in a traffic stream beyond which an initiated queue is going to propagate upstream 
is given by rewriting Eq. (7b): 
 

)k2/()]1/k(k kexp[ 0
2
0

2
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2
0 Lc ηλθ −−=       (11b) 

 
Again consider a flow at optimal density op0 kk = , and an inclined section of length L  of 
400 meters.  Setting parameter %75=η , one finds that the threshold value of cθ  is 4.1%, 
3.4%, 2.9%, 2.5%, 2.2%, and 2.0% respectively for a positive grade G of 3%, 4%, 5%, 6%, 
7%, and 8%.  Note that an uphill road curve of length of 400 m isn’t rare in urban areas.  The 
reduction in flow in these situations will be approximated by: 

01
2
0

2
1

2
0 k/k)]1/k(k kexp[1 −−−= λμ       (12)  

In Table 2, both the numerical reduction μ  at the threshold value cθ  for a steady flow were 
calculated using Eq (12) and were compared to reduction factors suggested by HCM [2000], 
respectively.   

Table 2:  Capacity Reduction Factor for a 400m uphill section 
 

Grade 3.0% 4.0% 5.0% 6.0% 7.0% 8.0%
θ c 4.1% 3.4% 2.9% 2.4% 2.2% 2.0%

Eq (12) 2.0% 7.5% 14.2% 20.5% 26.3% 31.2%
HCM 0.0% 9.4% 10.5% 11.9% 13.8% 16.0%  

 
One may infer from Table 2 that capacity reduction suggested by HCM underestimate the 

geometric effect of roads.  Moreover, the rationale for deriving the capacity reduction 
suggested by HCM isn’t clear, indicating that the validity of the heavy vehicle factor hvf  for 
different grades suggested in HCM owes a physical explanation [TRB 2000].  Examining the 
geometric factors and the traffic compositions are crucial in selecting freeway design 
strategies in order to avoid recurrent daily congestion, especially in peak periods.  Carefully 
examining the conditions imposed by Eqs (7a-b) for steady flow and Eq. (8-9) for non-steady 
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flow when performing a study to select design alternatives will help to relieve traffic 
congestion and improve a network mobility and accessibility to general public.   
 

One may apply the above formula for deciding the number of lanes needed for freeways.   
Let’s assume that (1) an upward 6% grade section of road has a length of 500m; (2) the truck 
composition in traffic is forecasted to be 5%; (3) the traffic flow volume is 3900 pcph one-
way in peak hours; (4) 75 % of trucks moves in the outside lane; and (5) the engine 
efficiencyζ  is 0.9.  Following the design guide [TRB, 2000], a two-lane freeway along one 
direction for this section will provide sufficient capacity.  However, by applying Eq. (11a) 
and Eq. (11b), one finds that mγ  is 1.20 and cθ  is 4.0%, respectively.  Note that the critical 
value cθ  is below the forecasted value of 5%.  Thus, a 6-lane freeway is needed in this case 
over the section of the design curve if similar vertical curves appear in both flow directions.  
Let us examine another example for rehabilitating a 3-lane freeway section (unidirectional) 
with a positive grade of 4.0%.  Consider that (1) the flow rate is 4400 pcph; (2) the heavy 
vehicles represent 4% of flow volume; (3) the road section with positive grade is 400 m in 
length; and 75% of heavy vehicles moves in the outside lane.   One may tend to think that 
keeping 2 lanes open could be sufficient for rehabilitating the outside lane.  Using Eqs. (7a) 
& (7b) and assuming the upstream traffic is well channeled to two lanes before moving 
uphill, one obtains that 36.1≈γ  and 20.1≈Γ .  The growth rate of the queue toward 
upstream is about 9 km/hr, indicating that the queue will accumulate to a length of about 1 
mile in 10 minutes.  Thus, in order to relieve the congestion, an auxiliary lane may be built or 
the shoulder should be made use for passenger vehicles.   

In Table 3, we examine the parameters Γ  and γ  for various positive grades in two 
different situations for comparison.  One is for steady traffic flow; and the other is for non-
steady flow.   Let’s assume the length of the uphill road section is 300 meters, the upstream is 
at the optimal flow condition; and the spill velocity of the moving bottleneck ν  is assumed to 
be to zero.  The vehicle parameters α̂ , β , ζ  are set to 2s/m1.0 , s/m 0223.0 , and 0.9 
respectively.  The truck traffic composition θ  and the distribution factor η  are assumed to be 
4.5% and 75%.   

 
Table 3: Queue and Queue Propagation Indicators 

 
Grade 3% 4% 5% 6% 7% 8%
γm 1.15 1.38 1.57 1.76 1.95 2.14
γns 1.89 1.90 2.08 2.38 2.73 5.44
Γm 0.82 1.00 1.17 1.35 1.53 1.71
Γns 1.29 1.35 1.45 1.62 1.99 3.15  

 
From the table, one can infer that the flow conditions can be exasperated when a slow truck 
is present at the foot of an uphill section.  This is expected when flow is relatively heavy 
because there is no enough headway between vehicles for a loaded truck to accelerate to a 
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higher speed before running uphill.  The heavy truck is forced to move in a jerking fashion.  
It takes a longer time duration for the truckt o reach the steady state speed 1v .  Thus, a queue 
longer than the one under a steady state condition form.  The situation is worsened when one 
or more loaded vehicles join the queue before the lead truck picks up the speed.  

 
A city network could be in an alarming situation when sufficient numbers of the uphill 

freeway sections were present.  In a large metropolitan area in US, there are on average two 
freeways going north/south direction, two freeways going east/west direction, and one ring 
belt around the metropolitan area.  One may find extreme examples such as LA & New York, 
where freeways are ‘numerous’.  The freeways excluding the belt way usually ‘intersect’ at a 
small region somewhere close to the center of a city.  Around the central area of a city, any 
design curves with positive grade higher than 3% may not be desirable unless enough lanes 
are provided.  An uphill freeway section might has impact on traffic beyond the section.  
Assuming the acceleration of a heavy truck is 2m/s 0.5 , it takes about 500 meters for a 
loaded truck to resume its normal speed.  Once the truck is slowed down, it takes a ‘long’ 
time for the vehicle to achieve the normal speed around 96 kph; and the longer it takes, the 
longer a queue will accumulate behind the heavy vehicles.  Bottelnecks initiated by a truck 
may propagate miles upstream and clog interchanges, which feed high volume of traffic from 
local arterials/highways to freeways in peak periods.  This clogging can potentially touch off 
congestion in an urban network, causing higher fuel consumption, heavier vehicle emissions, 
longer traveling time, unpleasant driving conditions, and possibly higher accident rates in 
freeways.  In general, within the urban area surrounded by a beltway, if a long vertical curve 
is to be constructed, the design must be executed carefully by providing a sufficient number 
of lanes over the length of the curve.  The consequences could be disastrous if several spots 
in the freeway network of a city were seeded with long vertical curves of insufficient 
numbers of lanes.  Once bottolneck effects from various spots overlap, the congestion would 
become global and would initiate a network-wide jam.  In order to avoid congestion at the  
network level, on average, the number of the trouble spots Ζ  should be limited by 

1v)(/ 1−≈Ζ mA γ       (13)  
The parentheses in the denominator indicate the queue length within the brackets is taken as 
the average.  Assuming the area of a city is 1024 square kilometers, the average queue in the 
peak hours caused by a trouble spot is about 5 km, and there should not be more than 6 such 
troubled spots in the network.   The main purpose of applying Eq. (13) in design is to stop 
globalization of localized congestion initiated by slow trucks moving on uphill road sections 
in a network.   
 
CONCLUSIONS 
  

The impact of an uphill road section or the uphill portion of vertcical curves on traffic 
flow is computed using Excel worksheets by considering the vehicle characteristics, the 
grade of the curve, the flow conditions, traffic composition in the flow stream.  The 
computational results are shown in several tables.  The existence of large vehicles in a traffic 
stream can reduce the capacity of the freeways in the positive grade section of a vertical 
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curve dramatically if traffic becomes heavy.  This makes a queue behind a heavy vehicle to 
grow indefinitely.  The queue can become long enough to block upstream interchanges when 
the percentage of the heavy vehicles in a traffic stream reaches certain limit.  Two criteria for 
a queue to grow beyond a road section with a positive grade are derived and applied to 
determine number of lanes needed for a few cases in both design and rehabilitation in 
contrast to the unexplained design method following the HCM manual.  Particular attention 
should be paid to the non-steady flow conditions, which are very likely to occur when truck 
composition is high, the grade of a road section is beyond 3%, and the length of the road 
section is long.  These macroscopic flow conditions are condensed to the formula for the 
queue indicator nsγ or mγ  and queue propagation indicator nsΓ  or mΓ .  When designing an 
uphill road section, one should first compute the indicators mγ  and mΓ , if these parameters 
show that a queue would form, one needs to add an auxiliary lane for maintaining a smooth 
flow in peak periods.  If parameters mγ  and mΓ  are not well below 1, one must compute 
indicators nsγ  and nsΓ  to make sure that both indictors are less than 1.  Or else, an auxiliary 
or extra lane is needed to avoid the initiation of traffic jams in peak hours.  The criteria are of 
great importance in design & rehabilitation for avoiding recurrent congestion in urban 
networks.  They can be further applied to highway design in areas where rapid future 
development is foreseeable and anticipated.   
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