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Abstract

Deep learning has unequivocally demonstrated far superior capabilities in solving problems than
any other machine learning technique and has thus far been showcased in a wide variety of applications
such as; Autonomous Cars and AlphaGo. Deep learning relies on large data sets to train models using
the neural network architecture with many hidden layers. Existing studies have demonstrated deep
learning as an effective alternative to standard methods of early stage cost estimation for construction
building projects. These undertakings have however been limited to a small sample size of data
observations and often from a singular source, which leaves an important question unanswered
regarding the ability of deep learning to generalise when exposed to a large sample size. This research
aims to understand how incremental increases in data size impact the performance of deep learning in
estimating costs during the early stages of design. The design of this research is to collect volumes of
data from project records and model these with a deep learning architecture designed from researched
key literature. This research employs a quantitative approach to analysing the data. The mean square
error and r-coefficient of correlation are the key markers by which the performance of the test data is
to be measured against. As a model is retrained in each instance under a different set of conditions, it
can be difficult to determine when a global minimum has been reached by the model and as such the
best of 5 attempts will be used as the marker for analysis for each data internal. The research is at the
stage of data collection and this paper reports on the literature review and research design.
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1. Introduction

Technological transformative leaps eventually infiltrate and meaningfully impact most industries
in the modern commercial world (Venturi, 2014). In the AEC (Architecture, Engineering and
Construction) Industry, leaps in technological advancements at pivotal points in time have impacted the
cumbersome ways by which projects are delivered from inception through to competition. These
transformative leaps disrupt stalwart processes in the AEC Industry and historically occur at a moment
of convergence when improvements in technological capabilities, barriers to utilisation and real
reductions to cost occur to such an extent that the pendulum swings relatively quickly in favour of any
particular technological adoption (Wynne, 2012). The next transformative leap to shape the AEC
industry is pointing towards several different technological vehicles, such as; artificial intelligence (Al),
the internet of things (IoT) and robotics (Kelly, 2016). The aggregation and use of data are at the heart
of each of these technological vehicles in which large data sets, and machine-learned algorithms
converge to drive optimal outcomes and efficiencies on order of magnitude previously unseen (Kelly,
2016). Machine learning uses algorithms that can learn from data without relying on rules-based
programming. Many different forms of machine learning exist, such as multiple linear regression,
decision trees and neural networks, of which many different subsets and types exist for each form (Pyle
and San Jose, 2015).

Deep learning (Neural networks with deep layers) has recently separated itself from the forms of
machine learning that exist today and poses as the most attractive. This is due to deep learning’s ability
to distinctly understand non-linear dependencies and complex relationships at a human level. The
underpinning which drives the performance of these deep neural networks are large amounts of data,
which can be properly trained in order to mimic the complex relationships that exist in the real world
(Pyle and San Jose, 2015). Large data sets in the AEC industry exist in many forms such as drawings,
schedules, quotations, applications and models and can contain many types of information such as costs,
engineering details, methodologies and schedules (Martinez-Rojas et al., 2015). As such there are
extensively many permutations and combinations of data points that can be used for a variety of unique
machine learned applications. One specific application which naturally fits well with the contextual
information described above is cost estimation of building construction as there is a heavy reliance on
historical data collected when formulating a predicted cost value (Skitmore and Picken, 2000; Smith ez
al., 2016).

The research into the viability of deep neural networks when purposed for early stage cost
estimation has been carried out by academic’s around the world and published in journals over the years
(Sontag, 1998). It is clear that the research conducted into the viability of deep learning as an alternative
for cost estimation in the building construction industry has been limited to comparatively small
samples of data sets. It can be inferred that due to the sensitivity of the cost data and decentralisation of
data locality, researchers have been physically constrained in the volume of data available. Deep
learning inherently requires large amounts of data to optimise the performance of a model, in fact
incremental increases of data added to a model should improve the overall performance of the model
(Foody et al., 1995). The size of the data based on the parameters and network design used commonly
across the research studies have not been tested under a meaningfully large data set, which would by
association cover a wider spectrum of projects and permutations. A deep neural network trained under
the design principles specified in the studies with large amounts of data should be able to generalise the
underlying relationships to such an extent that it can outperform the adhoc abilities of an experienced
estimator in order for it to deemed as a viable alternative.

Therefore, the following research questions are raised and to be answered in this study. Firstly,
how does incremental increases in data size impact the performance of deep learning in estimating costs
during the early stages of design? And secondly, is deep learning a viable and practical alternative to
traditional methods of estimating construction costs based on the current market requirements
estimators? At the time of writing this paper, the research is at the stage of data collection and this paper
reports on the literature review and research design.
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2. Literature Review

2.1 Stages of Design

Buildings are intrinsically a complex product to design, produce and manage given the sheer scale
of the tasks being undertaken, the bespoke nature by which the design is developed and the non-linear
relationships that exist between work activities. The management of cost planning activities is by
extension a difficult and complex activity during the development process of a project and is critical to
achieving the overarching goals of any construction project of being; on budget, on programme and
adhering to quality standards (Ostrowski, 2013). Seeley described approximate estimating as “. . .
techniques which attempted to give a forecast of the probable tender figure, although the basis of the
computation often left much to be desired” (Seeley, 1972). The latter end of this definition highlights
the stigma around cost estimation which has carried forward nearly 50 years later, in that the
computation behind approximate estimating is said to be somewhat of a “pseudo-science” or in other
words a mix between the disciples of science and art (Sundaram, 2015). There have since been various
nuanced definitions and understandings on what building construction cost estimation entails by
corporate bodies, researchers, authors and industry leaders.

According to the Australian Institute of Quantity Surveyors (AIQS) (2017a), a project undergoes
an evolution and transformation in succinct stages from an initial brief through to tender and then
construction. A cost planner is required to reassess the construction cost budget at these pivotal stages
in order to ensure that the intent of the brief is being met and to identify whether the design scope is
increasing beyond the view formed during the very early initial stages of the preconstruction process or
whether there has been a gross miscalculation in setting the budget at the brief or outline proposal stage.
The critical challenges associated with cost estimation during the early stages of pre-construction stem
from a lack thereof design documentation. The minimal design at this stage of the project is by intent,
as it allows various stakeholders such as architects, engineers and project managers to make dynamic
decisions that are comparatively cost-effective. Whilst empowering the project team, the cost planner
is inhibited in formulating a robust view of the defining project characteristics and hence an accurate
assessment of cost. The cost-estimate formulated by the cost planner during these early stages of pre-
construction, feeds back into the decision-making process. A vicious cycle of misinformed decision
making can begin, in which an inaccurate estimate is guiding the decision making of various
stakeholders. The minimal design during the early stages of pre-construction, limits the cost planner to
employing only a few traditional cost estimation methods based on an underlying principle of
abstracting rates to measured quantities.

2.2 Cost Estimation Techniques and Expected Accuracy

The superficial method (or otherwise known as the floor area method) is a cost estimation
technique that heeds to a simplistic arithmetic model. The nuances required in the application of such a
rudimentary cost estimation technique lays in the interpretation of the variables, “Area” and “Rate”.
Gross Floor Area (GFA) has inadvertently provided the building construction industry with a consistent
framework by which to benchmark project costs. Common alternate frameworks include Gross Building
Area (GBA), Net Lettable Area (NLA) and Gross Lettable Area (GLA). On the other hand, the "Rate"
variable is increasingly open to the cost planner's judgement in estimating a unit rate which reflects the
actual cost. As a starting point, a cost planner traditionally filters and isolates historical projects based
on a set of similar characteristics such as size, sector, building envelope, storeys, location and height,
forming a basis for a $/m2 rate applicable for the given project to be estimated. At this stage, a cost-
planner will have to draw upon a wide variety of internal and external sources as well as individual
experiences in order to form a view on the adjustments required to the unit rate in order to reflect
changes in factors such as project location, economic conditions, inflation, project design and risk
(Smith et al., 2016). The simplicity built-in to the technique gives the cost planner a high degree of
flexibility and discretion which can leave room for individual bias, errors in judgement and cognitive
dissonance, which edges the superficial method towards the non-scientific realm.
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The functional area method has its foundations built-up on the principles of the superficial method
but deviates by clustering spatial areas based on its functional use and applying specific $/m2 rates to
each of the compartmentalised areas. The numerical variable represents any number of functional areas
such as; residential, commercial, basement and lobby spaces. The clustering of areas by functional use,
gear the cost planner to apply realistic $/m2 rates which can reflect the design intent of the project
veraciously unlike the superficial method, which essentially is assessing a project as a single monolithic
item. Whilst the functional area method is more accurate at estimating costs comparatively to the
superficial method during the early stages of pre-construction, its challenges lay in the lack thereof a
framework which is consistent, valid, reliable and reproduceable. The superficial method has an area
framework which is singularly based and allows for easy translations between a wide variety of projects
unlike the functional area method that is multiplicity based and can be difficult to translate between
different spatial intents of projects. The effective utilisation of this technique requires a consistent
framework by which projects are measured and rated (Smith et al., 2016).

The margin of error demonstrated and expected in the AEC industry between estimated costs
against the actual costs of a construction building project gives credence to the pass/fail nature of when
an estimate is within an acceptable tolerance and when it is not. The performance of deep learning for
early stage cost estimation against markers expected by most professionals gives an insight into the
real-life use case for such a method. Cheung et al. (2008) examined the attitudes of clients and
estimators towards estimating errors by way of a questionnaire survey in Hong Kong. In reviewing the
acceptable errors held by clients for different sectors and market conditions, it is evident that based on
any given set of conditions the acceptable error percentage could range from as low as 7.06% for
overestimates in a good market for industrial projects to as high as 23.84% for overestimates in a bad
market for school projects. In averaging the acceptable percentage tolerance across all the different
permutations and combinations of conditions, clients averaged an acceptable tolerance error of 13.74%
whilst estimators an error of 13.55%. These averages suggest that on average an error of 14% is viewed
as perceptually, the acceptable tolerance between estimated and actual costs. It is important to
acknowledge that this bias is not a reflection on actual discrepancies but rather on perception which
may or may not be influenced by quantitative facts.

2.3 Deep Learning for Cost Estimation

Deep learning exists as a class of machine learning algorithms that exhibit features which include
a cascading of multiple layers of nonlinear processing units for feature extraction and transformation,
learning environments to be within supervised or unsupervised manners and the ability to abstract from
levels within a hierarchy of concepts (Deng and Dong, 2014). At this time, the most popularised and
documented form of deep learning to exist is in the form of deep neural networks, which in itself is an
artificial neural network (ANN) but distinguished due to the number of hidden layers in the network,
thus giving the artificial neural network, the distinction of being a deep neural network (Bengio, 2009).
An artificial neural network is a machine learned system in which data dictates the framework of any
given application instead of explicit logics scripted. The conceptual architecture of an ANN
encapsulates a framework in which a number of inputs are feed forward into a neuron which maintains
an activation function. Each neuron activates in the presence of certain observations and can generalise
theoretically the class of inputs which form the path to a highly accurate prediction. An activation map
is trained at each neuron as it is re-modelled, and a fully connected network exists between the inputs
and neurons, through to the corresponding output. Activation functions which can be used at each of
the neurons varies between Sigmoid, RELU, tanh and many other variants. A deep neural network
layers neuron in hidden layers between the inputs and outputs and this is the distinction that gives a
neural network its deepness (Olafenwa, 2018).

Kim and An (2004) compared a number of non-traditional cost estimation models for construction
projects namely, case-based reasoning, neural networks and multiple regression analysis. A sample of
530 projects are used in this study with 40 projects out of the 530 used to test the performance of each
of the non-traditional methods. Neural networks outperformed case-based reasoning which
outperformed multiple linear regression, however the time to reach global minima posed as an issue as
the varied results could not be extrapolated in definition. The input variables used for this study include,
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year of construction, gross floor area, storeys, total units, duration of construction, roof type, foundation
type, usage of basement and finishing grades. On average 90% of the test values fell within 10% of the
actual cost when modelled as a neural network that is optimised. The paper did not publish, disclose or
further explain the rationale behind the number of trials required to achieve global minima in the neural
network and hence an optimised result. A sample of 10% (or 40 projects) is on the lighter end but given
the constraints of data it is within reason why more projects are used to train the model instead of testing
its performance to further validate the model’s framework. The variables used in this model are far
reaching in terms of information that may be available to be considered during the early stages of design.
There is question mark regarding the inputs concerning the construction duration, roof type, foundation
type and finishing grades for which exact information is quite limited, as in some cases design is
required to be further developed in order to flush out the exact details of each input (Smith et al., 2016).

Chandanshive and Kambekar (2014) developed a neural network model based on MATLAB’s
neural net fitting tool, using the Levenberg-Marquadt algorithm. 58 projects are used in the modelling
of construction costs based on 9 parameters, which include; site area, ground floor area, typical floor
area, height of a building, quantity of shear wall, quantity of exterior wall, number of columns,
foundation type, number of householders and total structural skeleton cost. The artificial neural network
used for training, validation and training phase 70%, 15% and 15% respectively. The model is trained
for between 1 and 10 hidden layers, demonstrating progressively higher overall regression’s as the
number of hidden layers is increased up to 10. The study did not address the accuracy of the model in
terms of the practical implications in the industry and only viewed the results from the lens of statistical
analyses such as mean square error and regression values. The research paper did not delve into the
performance of the model from a standpoint that is digestible for analysis that could draw back to real
life implications or comparatives. Using 58 projects for a study of this nature, is extremely small as
well, the sample size does not dictate the use of artificial neural networks, especially with 10 hidden
layers, as the framework is exposed to being over-fitted due to the small number of observations.

Arafa and Algedra (2011) conducted a study into the use of artificial neural networks for early
stage cost estimation of build projects in Gaza, Palestine. This study followed a very similar approach
to that of which has been described in the two studies above except that 71 projects are along with a
different set of parameters. These 7 variables include; ground floor area, typical floor area, number of
storeys, number of columns, type of footing, number of elevators and number of rooms. The model had
one hidden layer and tested 12 projects against its trained model. The correlation of coefficient is 0.97
demonstrating a positive correlation between actual and predicted values, however this did not address
the performance of the model from a standpoint that is digestible for analysis that could draw back to
real life implications or comparatives. In a sensitivity measure conducted, they found that no. of stories,
ground floor and no, of elevators are the most influential in dictating the output of the mode. Using 71
projects for a study of this nature, is extremely small as well, the sample size does not dictate the use of
artificial neural networks, especially with 10 hidden layers, as the framework is exposed to being over-
fitted due to the small number of observations.

3. Research Methodology

The methodology employed in this study is tailored to meet its design requirements, which mainly
requires the size of the data to be abnormally large in comparison to studies carried out of a similar
nature. This abnormality requires a unique approach in that the data are collected from a secondary
source, from which many options are examined. As a result, a large portion of the findings and analysis
are limited by the scope of the data collected and not necessarily by the intent, as would be suffice when
primary sources for data are utilised for collection(Oluwatosin Ajayi, 2017). The study employs a
quantitative approach to discerning results and analyses for discussion(Creswell, 2013).

3.1 Design Requirements

The design requirements of the data that need to be collected for this study can be divided into two
parts. The first part is concerned with the number of data observations that needed to be collected. As
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the basis of this study is concerned with the performance of deep learning for cost estimation at scale,
it is critical that the choice of sourcing is able to account for the large number of data observations
required. The second part is concerned with the variables that are to be available for choice when
modelling the neural network. As mentioned in the literature review, there are many inputs which need
to be considered from previously published research papers. As studies previously carried out of a
similar nature had demonstrated, it is critical that inputs that are at the project level are available to be
modelled. The number of data observations used in previous studies ranged from 34-530 and as such it
is determined that at least double the amount of data observations are required in order for this study to
meaningfully research the impact of a larger data set when used for this application. The variables (or
inputs) required for the design would ideally have been as many as possible, given the structure of a
neural network is to disseminate the complex correlations that may or may not exist between variables
and to essentially remove the human dissemination of ideologue and thus allowing the model to make
its own determine on these relationships (Aamodt and Plaza, 1994). As such, there exist a mutual
number of inputs that would be required for this study. These variables include floor area, storeys and
functional use for the inputs and the value of the project as the output. Any additional inputs are to be
treated as secondary but still important to achieving the level of accuracy required. A dataset of a size
greater than 1000 observations and that contains data about floor area, storeys and functional use of
projects at a minimum form the minimum design requirement needed to be achieved for this study. If
several different sources and collection methods meet this criterion, the selection criteria will then be
based on a combination of factors including number of data observations, data quality, reliability and
number of secondary variables.

3.2 Data Collection

The design requirements of the data to be collected immediately nullify the option to source data
from primary sources. Primary sources would include methods such as interviews, questionaries or
direct data from the source such as a government entity voluntarily disclosing the financials of a project
they had undertaken (Oluwatosin Ajayi, 2017). As the fundamental requirements of the study require a
significant amount of data observations, primary sources which would pose a challenge from a practical
standpoint as that the collection of mass amounts of data would require the collaboration of many
participants. The decentralised market forces that exist in the AEC industry means that many companies
only hold a small portion of information of the total construction market and thus gathering at least
1000 data observations would require the participation of too many organisations (Flanagan et al.,
2007). Additionally, the type of data requested, in this case the costings of a project is a very sensitive
form of data and from a confidentiality point of view, it would pose as an additional challenge if such
information is to be sourced directly from stakeholders (Smith ez al., 2016). The same principles
described can be viewed from the lens of other stakeholders such as clients or quantity surveyors, in
both these cases there exist varying levels of decentralisation and sensitivities that would generally be
too profound to be selected as a source for data collection.

It is due to the constraints described above, that it is determined a secondary source is needed
which can not only meet the design objectives but reasonably be objectified as being reliable, valid and
accurate (Oluwatosin Ajayi, 2017). Two types of secondary sources are considered for this study, the
first being that which exists in public records and the second being that which is published by the private
sector. Public records seemed to be the logical path for this study as the records can reasonably be
determined as being reliable, valid and accurate due to the regulatory and legislative nature of the
records. The secondary sources of public records considered are that which are published by the
Australian Bureau of Statistics (ABS), Data61 and Local Government Councils. The ABS publish a
wide range of quantitative figures related to the building industry covering a spectrum of categories and
formats which determine key economic indicators. At the project level however, the ABS due to its
sensitiveness does not disclose project details and thus could not be used for this study (2017b). Data61
is a data initiative by the government which encourages the use of government data by opening up
records held by the government for the wide benefit of the community. However, Data61 does not have
the required data published and needs a request to be lodged in order to be disclosed. As there is no
guarantee on if this information would be disclosed, again due to the issue of sensitivity and as well the
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amount of time needed to process a request, this option is also rendered null. The last option looked at
using process automation to extract information from development applications lodged with councils.
Each local council generally has a development application portal available for the public to access as
public development notifications. Although the information varies from council to council in the way
that it is presented and what is available to view, generally one could access some project details such
as project location and cost, but any further information would require manual data entry from
associated documents and drawings. This option is feasible if there is enough manpower or automation
to classify the required information from council websites and index data accordingly.

Secondary sources from private entities seem to be the next logical source for secondary data that
fit the design requirements of this study. In exploring sources from the private sector, it is determined
that the viable options include CoreLogic's Cordell Connect and Macromonitor’s Key Project List.
Although being project specific in terms of identifying the project, its cost and when it would be
constructed, Macromonitor’s Key Project List does not provide any further details that are required as
per the design criteria. On the other hand, Core Logic’s Cordell Connect is an online platform that
published projects in Australia with a lot of information. This information includes many project
specific details along with ancillary information such as consultants and contact numbers. Cordell
Connect has a large database of projects that are researched and indexed by a team of 60 in Australia.
These projects have their information verified by council minutes taken at meetings and by industry
personnel. This poses as the most suitable option for this study as it can be reasonably extrapolated that
the data is reliable, valid and accurate based on the through research and processes being executed at
Core Logic. As the data exist online in a platform it is critical that the data stored within each of the
projects record can be extracted in a manner that is usable for MATLAB to model. In this case the data
is required to be extracted into a .csv file that follows the required standard principles of data design in
which each row is a data observation (a single project) and each of the rows represents an input (or
variable) (Wickham and Grolemund, 2017). Core Logic has data exported in a certain way to a .csv file
with a maximum capacity of 500 projects to be exported at a time. As such a R-Script is compiled which
can transform and merge the data from these raw files into a single .csv file, ready to be modelled.

3.3 Modelling and Analysis

The neural network modelling of data will be carried out in MATLAB, a popular programming
language used for a variety of purposes particularly for science and engineering. Its use for deep learning
is particularly popular and powerful due to the development of proprietary tool boxes which minimise
the technical programming skills required to model data for deep learning. The tool box used for this
study is the neural net fitting app, which is designed to map a data set of numeric inputs against a set of
numeric targets. In this case the variables are required to be numeric and the data which exist as factors
(i.e. categories) are converted to individual variables with 0 representing no and 1 represent yes. The
study uses the very fundamental selection of parameters that can be amended for such a use case. In this
case the Levenberg-Marquardt backpropagation algorithm is used along with a threshold of 70% of data
to be used to train the model and 15% to validate the model to prevent the model from over fitting. The
remaining 15% of the data is used to test the trained model. The splits can be amended and adjusted as
required but the split used for this study is to be kept as a constant variable using the default values in
MATLAB?’s tool box. The number of layers used for this model is 10 with sigmoid hidden neurons. The
variable which is being assessed for this study is the number of data observations to be used for the
training of the neural network model. For the purposes of this study the number of data observations
will begin by training a model at 100 observations and double each time over as a new interval is
introduced. This means that the next set of data observations to be assessed is 200 and then 400 and so
on. The data observations which will be used to train the model and then be tested are randomly assigned
and kept consistent over 5 different trials with the best trial used as the basis for assessment. The reason
the best trial is used as neural networks aim to achieve a global minima and it is very common for
training of a data set to begin down a particular path and achieve only local minima(Birui, 1989).

The neural net fitting tool outputs the results as a regression plot between the targeted values and
the values outputted by the trained model. The strength of the correlation is then assessed by the
coefficient of correlation of the line of regression. This value is between -1 and 1 with a value of -1
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meaning that the two values pitted on the x and y axis are moving perfectly not in unison whilst a value
of 1 means that the two values pitted on the x and y axis are moving perfectly in unison. A value of 1
in this study would indicate that the model has perfectly generalised and modelled the complex
relationships that exist between the inputs of the deep neural network and is able to predict exactly the
value of a construction project based on the inputs used to train the model. The coefficient of correlation
is one of the key markers used in this study to compare the performance of the deep neural network at
several different data set size intervals. The second marker used to assess the performance of the model
is the RMSE, which is the absolute value of the mean difference between the targets and outputs. This
is a holistic number that is comparable to the values of the projects used to train the model and given
an insight into the average bias between targets and outputs. The third marker used to assess the
performance of the model is the “E-Value”, which is a value to give insight into the practicality of the
model in the real world by assessing its performance against the expected performance of an estimator
by industry standards. The bias expected to be achieved by estimators is between 10% and 14%, when
considering actual and perceptual thresholds of acceptability. As a result, the E-Value is to be analysed
against projects which predict values within 10% of the actual value and is to be referred to as E-10 for
this study, whilst projects which predict values within 20% of the actual value known as E-20. The
results of each of these markers give insight to a unique set of analyses.

4. Summary

This study aims to extend upon previous research focusing on the utilisation of deep learning as a
non-traditional method in estimating the construction costs for construction projects during the early
stages of design when project information is limited. The research methodology used for this study was
formed around two central design requirements of the data set, the first being the need for the number
of data observations to be at least doubled the number of projects than previous similar studies. As such
an arbitrary number of 1000 of projects was deemed as the minimum threshold of projects required to
be modelled for this study, which focused on the scalability of deep learning for estimating costs during
the early stages of design. The second design requirement of the data was concerned with the variables
that would be available to be modelled in the neural network. In assessing similar studies, a mutual pool
of project characteristics is evident as the most sensitive to cost. These parameters included floor area,
number of stories and functional use. Secondary inputs or variables would be critical in disseminating
and modelling the complex interplay between each of these variables but could be given some latitude
in terms of the make-up of each of these parameters. Floor area, storeys and functional use were
essential details of a project required to be modelled for the purposes of this study.

The data source selected which could meet the design objectives best were from CoreLogic’s
Cordell Connect, a secondary private source that could reasonably be considered to be accurate, reliable
and valid. The variables of the model including the algorithm used, randomised data sample and
validation/testing threshold are kept constant in order to test the variable of data size on the performance
of the neural network. Data intervals of 100, 200, 400, 800 and 1600 are the intervals measured, from
a best of 5 trials. From a practicality point of view, the model’s performance is pegged against a
percentage of projects which are able to meet the industry thresholds of 10% and 20%.

This paper has demonstrated the challenges that are present in utilising deep learning for estimating
construction costs at scale and has presented the gaps that exist in current research as it relates to the
application of this method from a practicality point of view in that the lack of project information makes
it difficult for deep learning to generalise and model the complex behaviour of a wide spectrum of
projects. Innovative approaches which aim to tackle this problem with an added caveat or a different
approach may hold the key to successfully deploying deep learning for estimation of construction costs
during the early stages of design at scale.
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