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Abstract

Big data, reflecting both qualitative information and quantitative material, can be used within the
construction management processes of complex and large-scale building activities, such as the
development of whole districts in urban areas. Such big data is probably largely focused on transport
routes, productivity and site logistics portfolios. However, despite the capabilities offered by
construction informatics, such data has scarcely been utilized systematically and in its full capacity for
descriptive and predictive purposes. Such a systematic data utilization process can be framed through
the lens of the novel construction management concept of district constructability, namely the extension
of constructability into the collective level of entire districts. Constructability is here understood as the
optimal use of construction knowledge and experience in planning, design, procurement, and field
operations, to achieve the project objectives of time, cost and quality, and omit the gap between the as-
designed and as-built project states. District constructability moves from individual projects to an
overall metric for the facilitation of construction knowledge and experience implementation when
undertaking large-scale construction activities (e.g. the erection of numerous buildings) for the
development of entire districts; thus, it can be realized, among others, through the achievement of
optimal construction productivity rates and smooth logistics operations. To combine all the
aforementioned, and simultaneously fully and meaningfully exploit the capabilities that construction
productivity and logistics big data may present for the assessment of district constructability, data
mining can be utilized, namely the set of processes that computationally discover and “comprehend”
patterns in datasets. More particularly, machine learning, here defined as the exploration of algorithms
that enable computing systems to “learn” and make data-driven predictions by building a model from
a sample dataset and without being explicitly programmed, can be at the methodological forefront of
fully exploiting all data found in transport routes, buffer facilities, productivity rates and logistics
portfolios. In this paper, the capabilities of the information structures found in the data for developing
machine learning models predicting the district constructability in new large-scale urbanization
activities, are examined.

Keywords: District constructability, productivity, logistics, big data, machine learning.

32



1. Introduction

Construction management is the research and application field that, apart from deeper systematic
understanding, aim at providing the methodologies and tools implemented for the management of
construction projects from their initiation until their delivery, so that their objectives of time, cost and
quality are optimized (Knutson et al., 2008). As with individual projects, construction management as
activity is integral in large-scale construction activities, as they are set out in long-scope urban
development strategy plans for whole districts, or even towns, cities, and their metropolitan areas (see,
for example, the plan of the Planning and Building Committee, 2014, for the town of Gothenburg,
Sweden); such activities can include the erection of buildings (e.g. residential, offices etc.), as well as
stand-alone or supporting infrastructural projects (Goteborgs Stad, 2019). Key to successful
construction management, also when building districts, is the collection, understanding, and processing
of relevant big data (Bilal et al., 2016; Chen & Lu, 2018); such big data can include quantitative and
qualitative productivity-related indicators, such as productivity rates (Kitchin, 2014), as well as
elements related to construction logistics and supply chains portfolios (Yigitcanlar et al., 2008). Within
construction informatics — namely, the interdisciplinary applied field related to construction,
information systems and computer science and studying the issues related to the design, processing,
representation, implementation, communication and use of construction-specific information in humans
and software (Turk, 2006) — methodologies and tools are explored for such meaningful utilization of
big data for construction management (Turk, 2007), including data mining and machine learning (ML)
(Turk, 2007; Bilal et al., 2016; Chen & Lu 2018).

Particularly, data mining is the set of processes used to discover and comprehend patterns in
datasets (Bilal et al., 2016; Tan et al., 2018). ML is used for state-of-the-art data mining (Bilal et al.,
2016; Witten et al., 2017), and is generally defined as the exploration of algorithms that enable
computing systems to “learn”, i.e. develop new algorithms linking data, and make data-driven
predictions by building models from sample datasets, without being explicitly programmed (Witten et
al., 2017); complementarily, it can be said that ML systems are computer systems that automatically
improve through experience (Jordan & Mitchell, 2015; see also Sarkar et al., 2013; and Portugal et al.,
2018). ML is frequently classified in three types: supervised, unsupervised, and hybrid. Supervised ML
utilizes algorithms that are trained and validated using labeled datasets, in a context where it is assumed
that the reasoning of the application domain is known (Tan et al., 2018). The task of the respective
algorithm is to learn the way they should act based on real training data, validate such gained knowledge,
and then apply it on new instances for predictive purposes (Portugal et al., 2018). Exemplary algorithms
used in supervised ML include decision trees, decision forests, logistic regression, support vector
machines, kernel methods, and Bayesian classifiers (Portugal et al., 2018). Unsupervised ML deals with
unlabeled datasets having hidden patterns (Witten et al., 2017), and can be understood as “the analysis
of unlabeled data under assumptions about structural properties of the data” (Jordan & Mitchell, 2015).
In unsupervised ML, algorithms do not operate on a training set; the respective systems are rather
presented with some data about a domain and have to develop relational models from that data “on their
own”, by running internal procedures (Portugal et al., 2018). Exemplary algorithms used in ML include
vector quantization clustering, and generative adversarial networks (Hastie et al., 2009). Hybrid ML
mixes approaches, including semi-supervised and reinforcement learning (Jordan & Mitchell 2015;
Portugal et al., 2018); it is increasingly preferred in current research efforts (Portugal et al., 2018;
Amasyali & El-Gohary, 2019). Even more recently, deep learning, building on the foundations of ML,
has received much attention; its systems utilize gradient-based optimization algorithms to adjust
parameters throughout multilayered networks, based on errors at their outputs (Jordan & Mitchell, 2015).

As noted earlier for the case of large-scale construction activities, the big data to be used within
construction management can be both qualitative (e.g. lessons-learned databases), and quantitative (e.g.
cost and time overheads) (Chen & Lu, 2018; Yeung et al., 2018). However, and despite the capabilities
offered by construction informatics, it has scarcely been utilized systematically and in its full capacity
for descriptive and predictive purposes (Bilal et al., 2016); it is mostly used either in a simple
informatory manner (Bilal et al., 2016), or for more narrow applications (Bilal et al. 2016; Tixier et al.,
2016). Empirical knowledge is still the main driver of state-of-art construction management, even when
aided by cutting-edge methodologies and tools utilized within construction informatics, and especially
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ML and its aforementioned variants (Bilal et al. 2016; Tixier et al., 2016). Construction managers still
prefer to mainly use hands-on experience; but while tacit experience is essential, a more holistic data
utilization could enhance the managers’ decision-making and action-taking (Kumar & Reinartz, 2018).

Such a ML-aided holistic data utilization for construction management, can prove essential in the
messy environment of large-scale construction activities, like the development of entire districts. This
can be even more crucial in cases of rapid urbanization; such an intensive activity and its associated
complex processes, especially within densely populated areas, may result in several construction
management issues, like productivity- and logistics-related ones (e.g. delayed deliveries, complicated
supply chain coordination, and low on-site productivity) (Dubois et al., 2017). But to reach such a
meaningful and systematic utilization with practical and useful results, the relative contextual
framework must be devised, the associated types and orders of datasets must be identified, and the
suitable technical aspects (e.g. the ML algorithms) of the model leading to the realization of the
framework must be investigated, tested and verified. The aim of this paper is to devise a conceptual
framework, for the exploitation of big data to build ML models acting as decision-making and action-
taking helpers for construction managers operating within large-scale urban activities (culminated in
the case of whole district construction). In the second section of the paper, the introduction of the
concept of district constructability will act as the contextualization of the framework. In the third section,
forms of big data generated in district development, and especially the ones related to productivity and
construction logistics, will be investigated in terms of their capabilities and suitability for use within
ML models appraising district constructability. In the fourth section, early considerations for the
realization of the conceptual framework will be showcased. Following will be the conclusions and
recommendations for future work.

2. Context: district constructability

Constructability is “the optimum use of construction knowledge and experience in planning, design,
procurement, and field operations to achieve overall project objectives” (Construction Industry Institute,
1986). It is a crucial aspect of optimal construction management, and it encompasses buildability (“the
extent to which the design of a building facilitates ease of construction, subject to the overall
requirements for the completed building” (Construction Industry Research and Information Association,
1983) as its design- and early construction-related aspect. Constructability, also including early
contractor involvement, is implemented through the whole initiation, execution, and delivery project
lifecycle phases to optimize the project’s performance objectives of time, cost, and quality
(Construction Industry Institute, 1986), as well as client satisfaction (Poon et al., 1999). Such an
implementation is achieved with constructability programs, namely “the application of a disciplined,
systematic optimization of construction-related aspects of a project during the planning, design,
procurement, construction, test, and start-up phases by knowledgeable, experienced construction
personnel who are part of a project team” (Construction Management Committee of the American
Association of Civil Engineers, 1991). For the realization of constructability programs, several
methodological and application frameworks have been integrated with constructability, such as —
indicatively — planning and operations performance evaluation, hybrid value engineering, knowledge
management, cost/benefit analysis, total quality management, object-oriented analysis, total building
performance, regression analysis (Kifokeris & Xenidis, 2017), and technical project risk analysis
(Kifokeris & Xenidis, 2019). Furthermore, numerous related cognitive, mathematical, programming,
and software methodologies and tools have been developed to appraise and/or assess constructability in
terms of quantitative and qualitative project features’ assessment, schedule-cost-quality management
and decision-making, program review, information feedback, and knowledge management and
dissemination (Kifokeris & Xenidis, 2017), including, among others, diverse ML models (Skibniewski
et al., 1997; Ugwu et al., 2005; Le et al., 2018; Kifokeris & Xenidis, 2019).

Among others, important constructability aspects are a holistic view on logistics (including, but
not limited to, supply chain integration, on-site resources flow management, and close cooperation of
the related actors), and the optimization of the productivity of the whole project lifecycle, and especially
during on-site operations (Kifokeris & Xenidis, 2017). Even for large-scale construction activities, such
as the development of entire urban districts, constructability of individual projects (e.g. high-rise

34



buildings) can be realized, among others, through the achievement of optimal construction productivity
rates and smooth logistics operations (Kifokeris, 2018). In conjunction with that, the overall
performance of construction activities in the district level can be contextualized accordingly and
appraised in terms of optimized productivity and smooth logistics operations — as reflected in the
relative big data generated in each case — which centrally include quantitative and qualitative
productivity-related indicators (such as productivity rates (Kitchin, 2014)) and elements related to
construction logistics and supply chains portfolios (Yigitcanlar et al., 2008). Considering the two
aforementioned points and by exploiting (a) the direct connection of constructability to the overall
project objectives rather than narrow applications, (b) its affiliation with construction knowledge and
experience implementation, and (c) the capabilities of construction informatics (and especially ML) in
extracting and processing productivity- and logistics-related data, a novel predicting ML system aiming
at holistically enhancing the decision-making, action-taking and knowledge communication of
construction managers affiliated with the urban development of entire districts, can be formulated.

To capitalize on the points made above and create a contextualization for the previously mentioned
predicting system, we hereby propose the concept of district constructability. District constructability
extends constructability from individual projects to an overall, collective metric for the facilitation of
construction knowledge and experience implementation when undertaking large-scale construction
activities (e.g. the erection of numerous buildings) for the development of entire districts, thus acting
as a qualitative performance indicator for urban development. Central factors in the appraisal of district
constructability are qualitative and quantitative indices and metrics connected to on-site construction
productivity and construction logistics operations on the district level. Therefore, in the abovementioned
potential predicting system, district constructability can provide the context of its conceptualization and
realization, since in the core of this system there can be a model for the prediction of the way
construction productivity rates and logistics and supply chain issues in the district level can affect the
associated district constructability.

3. Big data for district constructability appraisal

Following the contextualization of the previous section, forms of big data generated in district
development, and especially the ones related to productivity and construction logistics, will be
investigated in terms of their capabilities and suitability for use within ML models appraising district
constructability. As the basis for this investigation, the data found in the productivity report
“Produktivitetsldget 1 svenskt byggande 2014” [Productivity status in Swedish construction 2014]
(Koch & Lundholm, 2018) — based on the work by Josephson (2013) — was used. The aforementioned
report adopts the metrics of cost (SEK, Swedish crowns) and work hours per square meter of total gross
area, for the measurement of productivity for different building types. In addition, logistics problems
are identified and qualitatively assessed on a five-point Likert scale. It is assumed that project output
depends on the relevant conditions (such as the performance of the project organization) as input, and
then the production process takes place and “causes” costs and working time (namely, productivity), as
well as logistics issues, as the output. Significant stakeholders are identified for each project, such as
the clients, the contractors, and the suppliers.

The data in “Produktivitetsldget i svenskt byggande 2014” was collected through telephone
interviews supported by questionnaires. In this way, answers are based on the respondent’s own
perspective (Koch & Lundholm, 2018). Construction projects encompassed in the survey are primarily
premises. These include daycare centres, schools, office buildings, administrative buildings, sports and
recreation facilities, hospitals and elderly care centres, church buildings, nursing homes, stores,
industrial properties, and group-built family houses. In each individual project, the client’s project
manager and the contractor’s site manager answered the relevant questionnaires, during the period of
October to November 2014. The questions covered project aspects, such as the relevant processes,
organization, costs, time, work progress, and team performance, and their number was limited. In the
respective questionnaires, the clients received 23 questions and the site managers 21. The surveys were
sent to 1000 individuals, with 580 valid responses (58% overall answering rate). The survey was
answered by 324 contractor representatives (72% answering rate), and 256 clients (62% answering rate).
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The relevant statistics are interesting in revealing the most central existing issues regarding
productivity, construction logistics and supply chain management in the sites investigated; the issues of
on-site congestion, transportation challenges and storage bottlenecks, are experienced by site managers
at around 40% of the studied projects (Koch & Lundholm, 2018). Congestion is thus recurrent to an
extent, yet an exception compared to 60% of the sites not reporting it. Some of the districts
corresponding to site managers reporting congestion were situated in Stockholm and Malmo; however,
and surprisingly enough, congestion was also evident in much less populated towns. In total, the central
productivity and logistics issues concerned ten districts (‘“kvartdrer”) or and four single or multi-project
areas having similar development needs (e.g. brownfields).

In the district development cases, the productivity rates and the logistics and supply chain issues
were calculated and appraised, respectively, in the ways mentioned above. Logistics and supply chain
issues primarily pertained to the good cooperation of the project group regarding on-site supply chain
tasks, disturbances in the relative flows, on-site congestion, keeping of the delivery timetable,
difficulties in material and equipment transportation and storage due to on-site narrow spaces,
limitations in the construction production and logistics preparation, the extent of available staffing for
the construction works (recognized as a risk source for constructability in Kifokeris & Xenidis, 2018,
and therefore potentially extensible to the case of district constructability), and the informed selection
of the material and equipment suppliers (Koch & Lundholm, 2018).

The data found in the above also needs to be further complemented with more data found in
logistics portfolios and productivity studies of construction projects, and can then be utilized as a basis
for a translation into independent variables that suit predictive ML systems, e.g. ones using support
vector machines and/or support vector regression for classification or regression, respectively, through
supervised ML. The productivity rates can be translated into continuous numerical variables, having as
benchmarks median productivity rate values in relation to e.g. the size, number and type of the
individual projects constructed during the whole district development activities. In addition, the
logistics and supply chain management issues appraised through the Likert scales can be translated into
multinomial categorical variables, or processed into binomial variables 1 or 0, for “yes” or “no” for
binary classification problems.

To properly train the respective ML models, district constructability should also be translated into
the dependent variable. Evaluation of district constructability is at present mostly built on experiential
knowledge supplemented by some modeling, according to interviews conducted by the authors.
However, in the relevant literature, there has not been yet, to the best of the authors’ knowledge, a
meaningful representation of constructability as a continuous variable — apart from some early
conceptual attempts like the one of Yu & Skibniewski, 1999. Therefore, it may be sensible to base the
representation of district constructability on efforts treating constructability itself as a discrete variable
(e.g. on the binomial constructability variable in Kifokeris & Xenidis, 2019). As district constructability
is, both in itself and as an object of machine learning modelling, a hereby introduced new concept, it
may be difficult to properly define a continuous domain for its numerical values, along with all the
associated thresholds and benchmarks. Therefore, a multinomial representation (e.g. via a three- or five-
point Likert scale, or via whole-number percentages) of district constructability could be more
informative and in line with the current related research trends.

To sum up these insights, in Table 1 (see next page) there is an exposition of the exemplary
independent variables that can be potentially derived from big data found in studies on productivity,
logistics, and supply chain management, as well as the translation of district constructability into a
dependent variable. Such a list of variables can be enrichened with yet more relative elements generated
within similar research and practical studies, like, for example, production flow inventories,
descriptions of construction site spatial and schedule clashes, number of reworks, material quantity
problems, optimal vehicle rounds, district disturbances, and the existence and proper function of buffer
facilities for vehicles and goods.

36



Table 1: Exemplary independent and dependent variables for district constructability appraisal,

as derived from Koch & Lundholm (2018)

Independent variables Type Example of value
Productivity rate Continuous 0,1 (%)
Level of project group cooperation for on- Discrete
. . . . {1,...,5}
site supply chain tasks multinomial
. Discrete
Flow disturbance . . {1,...,5}
multinomial
. . Discrete
On-site congestion . ) {1,...,5}
multinomial
. . . Discrete
Keeping of delivery timetable . ) {L,...,5}
multinomial
Difficulties in material and equipment Discrete
) . ) {1,...,5}
transportation and storage multinomial
Limited construction production and Discrete (1....5)
logistics processes preparation multinomial T
Enough workforce for optimal undertaking Discrete
i . ) {L,...,5}
of construction tasks multinomial
Informed selection of material and Discrete (1....5)
equipment suppliers multinomial U
Dependent variable Type Example of value
o o Discrete
District constructability . . {1,...,5}
multinomial

In addition, indicators and metrics of the infrastructure in and around the district (e.g. access routes,
points of entry, traffic diversion and/or emergency roads) should be considered, for a more holistic

representation of real situations in district development.

4. Modelling aspects of the conceptual framework

After the relative contextualization with the introduction of district constructability, and the
investigation of the capabilities of forms of productivity- and logistics-related big data generated in
district development for use within a ML model appraising district constructability, the early conceptual
steps and considerations for the actual formulation of such a model are given in Figure 1 (see next page).

What is showcased in Figure 1 can be furtherly explained in the following:

Step 1. Data collection. For a large number of building projects that are part of the ongoing entire district
development, the data suppliers will provide quantitative and qualititative construction
productivity and logistics data (e.g. site productivity rates, production flow inventories,
descriptions of construction site spatial and schedule clashes, material quantity problems, material
and equipment transport routes and bottlenecks, indicators about buffer facilities). In addition, they
will supply a qualitative district constructability labelling of the respective districts (e.g. using a
five-point Likert scale). The interpretation of the qualitative labels as levels of district
constructability achievement, can be obtained through interviews along with the data providers.
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Data collection: Variable formulation: Formulation of

*  Quantitative & ¢  Independent variables connected to supervised ML
qualitativ.e constr!m?ion productivity + logistics data - formulated system
:;::uctwltv + logistics via unsupervised ML and/or expert input | (algorithm -
. Qualitative district . Dependent variables connected to district testing, training
constructability labelling constructability labelling and validation)

f

NO

Integration of results and production of a
working prototype

Satisfactory observed accuracy
and error metrics?

Figure 1: Explanatory simplified flowchart describing the conceptual framework

Step 2. Variable formulation. Independent variables: Depending on the form of the construction
productivity and logistics data, meaningful independent variables (e.g. “Number of reworks”)
measured through the values of the collected data, will be produced either through unsupervised
ML techniques (e.g. vector quantization, linguistic clustering), or qualitative techniques relying on
expert input (e.g. brainstorming). Dependent variables: These will be the district constructability
achievement levels, and can act, for example, as multinomial discrete classification variables.

Step 3. System formulation. A ML system trained and validated with the collected data, in the way it is
expressed through the independent and dependent variables previously defined, will be formulated.
A possibility is to choose a multinomial classification supervised ML scheme to be trained and
validated, as it can be derived from the data form and amount, and the variables’ type and number.
This choice can be specified as a result of multiple experiments conducted within a suitable
platform (like the Waikato Environment for Knowledge Analysis — WEKA) (Witten et al., 2017),
with numerous algorithms, such as variations of the support vector machines and the random forest
algorithms. Given the pre-study of the previous section on the possible representation of the
exemplary variables, such a multinomial classification supervised ML scheme can operate with
algorithms like naive Bayes classifiers, decision trees, random forests, k-nearest neighbors, support
vector machines (SVM), and types of artificial neural networks, as they are considered suitable for
such classification problems (Witten et al., 2017).

Error and observed accuracy metrics can be used during each training and validation iteration of

the respective algorithms, to determine the actual correctness of the algorithmic results. Among

such error metrics are included the Cohen's kappa, mean absolute error, true positive rate, false
positive rate, precision, recall, F-measure (Witten et al., 2017), and the Matthews correlation
coefficient (Chicco, 2017). When the observed accuracy rates after the training and validation of
the respective algorithm are sufficiently high and/or satisfactory, and at the same time the

aforementioned metrics are within thresholds characterized as good or optimal (Witten et al., 2017),

there can generally be little to no room for further optimization for the respective modelling with

the current dataset t has been presented with (Witten et al., 2017).

Auxiliary mathematical, methodological and software tools may be utilized to various extents
within Steps 1-3, such as (a) non-negative matrix factorization for data normalization and pre-
processing (Steps 1-2), (b) multi-input Analytical Hierarchy Process (AHP), for variable labelling (Step
2), (b) the “kernel trick”, to aid in the non-linear function of certain supervised ML algorithms, if elected
(Step 3), (d) n-fold cross-validation, for the simultaneous training and validation of certain supervised
ML algorithms, if elected (Step 3), (e) the WEKA platform (Step 3), (f) Surprise Scikit (Steps 2-3), and
(g) the programming language Python (Steps 2-3).

Step 4. Integration of results and production of a working prototype. The ML system can be integrated
as a working prototype within construction management plans in the district level, for the
verification of its predicting results — namely, the appraisal of the level of district constructability
during the development of new districts, given the values of the productivity- and logistics-related
metrics utilized as independent variables, as those values are generated in the course of the district
development. This may take place through suitable programming routines and/or graphical user
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interfaces (such as PyQt, featured in the Anaconda platform).

Such a novel methodological framework and subsequent modelling can not only break ground with
the proposition and appraisal of a new concept connected to urban development in the district level, but
can furtherly strengthen the placement of ML within construction informatics, for the benefit of
construction managers and related disciplines.

5. Conclusions

The urban development of entire districts represents a wide array of interconnected construction
activities through multiple individual building and infrastructural projects; it can also generate big data
primarily culminated in metrics such as productivity rates and identified issues related to on-site
logistics and supply chain management. Apart from their individual exploitation for informatory reasons,
these points of data can also be used as a means to measure yet more holistic metrics, which can provide
construction managers (and other key stakeholders) with a higher-level overview of the district
development process, thus helping in more well-founded decision-making and action-taking.

Models utilizing ML algorithms and miscellaneous methodological, mathematical and
programming tools, can provide the framework for such a meaningful understanding, processing and
exploitation of the aforementioned big data for descriptive and predictive purposes, as long as there are
suitable concepts to contextualize this implementation in the construction and district development
sector. Such a concept can be found in the hereby introduced notion of district constructability, which
is an extension of the construction management concept of constructability from the level of individual
projects to an overall, collective metric for the facilitation of construction knowledge and experience
implementation when undertaking large-scale construction activities (e.g. the erection of numerous
buildings) for the development of entire districts; thus, district constructability can acting as a qualitative
performance indicator for urban development.

Qualitative and quantitative indices and metrics connected to on-site construction productivity and
construction logistics operations on the district level can be used for the appraisal of district
constructability. So, for the culmination of a relative ML model, independent variables can be generated
from such metrics, and then computationally correlated with a dependent variable representing district
constructability. Such independent variables can include, among others, the level of project group
cooperation regarding on-site supply chain tasks, flow disturbances, on-site congestion, keeping of the
delivery timetable, material and equipment transportation and storage difficulties, limitations in the
construction production and logistics preparation, construction staff availability, material and
equipment suppliers selection, optimal vehicle rounds, the function of buffer facilities, the level of
disturbance due to the on-site construction and transportation activities, production flow inventories,
descriptions of on-site spatial and schedule clashes, number of reworks, and material quantity problems.

A recommendation for further research is the actual realization of Steps 1 and 2 of the presented
framework through access in the relative databases given by the interested stakeholders. Concurrently,
the study of and experimentation with ML algorithms on a suitable platform should be undertaken, to
prepare for the realization of Step 3. ML is a field that can present a wealth of opportunities for the
development of solutions within the construction sector and construction management specifically, and
even more in high/profile activities such as the development of entire urban districts.
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