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Abstract

Machine learning (ML) energy prediction models are useful to estimate the building energy
demand with short response time, particularly important for developing energy-efficient building
designs at an early stage of design. Component-based machine learning model (CBML) is the state-of-
the-art development of ML energy prediction and useful to improve the generalizability of models. The
concept of CBML is based on decomposing the design artefact in an engineering-related way and
calculating intermediate parameters such as heat flows through building elements, followed by energy
component at zone level and finally total energy demand at building level. Previous research showed
that the method works but the improvement of the range of design and accuracy are still desirable to
make the method more aligned to architectural design. Therefore, in this paper, we propose to enrich
the training data with new building shapes and enhanced features typical for architectural design. For
training each model of CBML, the data is collected by performing parametric energy simulations with
three different building shapes and tested on fourth shape. A manual feature engineering approach is
carried out by extracting useful features which have an influence on the target value. The accuracy of
CBML is ascertained by coefficient-of-determination (R’-values) and mean absolute percentage error
(MAPE). The effect of enriching data with different building shape is studied by training ML model
while increasing data sequentially and recording the improvements in the prediction accuracy. To study
the effect of enhancing feature, CBML is developed with two types of features — raw and enhanced
features and recording the change in the prediction accuracy. Furthermore, the influence of features is
calculated using permutation importance to study the effect of additional features. The accuracy of total
building energy model on new building shape improves from 5.18% to 3.14% (MAPE) and 0.9970 to
0.9988 (R’) after enriching the data with several building shapes and enhancing the features.

Keywords: Feature Engineering, Training Data, Feature Importance, Performance, Permutation
Importance.

1. Introduction

Machine learning (ML) energy prediction models are useful to predict the building’s energy
demand in a short response time compare to traditional energy simulation tool (Geyer & Singaravel,
2018; Singaravel, Geyer, & Suykens, 2018). This is quite relevant for predicting energy demand and
developing energy-efficient building designs at an early stage of design when the design parameters are
inherently uncertain (Struck, de Wilde, Hopfe, & Hensen, 2009; Tian et al., 2018; Van Gelder, Janssen,
& Roels, 2014). The concept of component-based machine learning model (CBML) is introduced by
Geyer and Singaravel to improve the ML model generalization to design cases not present within
training design cases (Geyer & Singaravel, 2018). In monolithic models, target variable is directly
predicted using building design parameters as input features. However, the concept of CBML is based
on decomposing the design artefact in an engineering-related way and calculating intermediate
parameters. CBML offers a unique opportunity to integrate an energy prediction model easily with
multi-level-of-detail (multi-LOD) building information model (BIM) data structure (Abualdenien &
Borrmann, 2018; Geyer, Singh, & Singaravel, 2018). The integration of CBML with BIM models has
the potential to streamline the design and energy prediction process at any stage of the design process
(Singh, Singaravel, & Geyer, 2018).
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In previous implementations of the CBML, a decrease of the accuracy is observed when using
component models trained on parametric simulation results from rectangular buildings on more
complex building shapes (Geyer & Singaravel, 2018). Reason being complex environmental
interactions present for complex building shapes were not present within the training space
characterized by rectangular buildings. In this research work, the accuracy of CBML is improved by
enriching the training data with several building shapes and enhancing features. It has been proven that
the accuracy of ML models increases with the training data irrespective of the algorithm in speech
learning application (Banko & Brill, 2001). The approach of enhancing features to improve model
accuracy is discussed in few studies (Catalina, Virgone, & Blanco, 2008; Cheng & Cao, 2014). The
accuracy of the model improves with newly developed features, but it lacks the use of formal techniques
to study the feature importance. The objectives of this study are:

1) To study the effect of enriching data with several building shapes to improve the prediction
accuracy of ML models.
2) To study the effect of enhancing features on the prediction accuracy of ML models.

2. Literature Review

There are several efforts made to make quick energy prediction using engineering-surrogate or
data-driven models (Van Gelder, Das, Janssen, & Roels, 2014). These models offer few advantages
over traditional energy simulation tools in terms of computational time at the cost of prediction
accuracy. It is possible to evaluate a large number of simulation model using these approaches which
are required for making probabilistic energy prediction at the early stage of design (Van Gelder, Janssen,
et al., 2014). There are several research studies published on the use of machine learning models for
energy prediction (Fumo, 2014). However, these models offer limited integration with the design
process and the applicability of the models is limited to the training design case. The concept of CBML
is introduced to overcome multiple limitations of monolithic ML energy prediction models such as
extensionality to new design cases, training models for generic building elements, and integration with
BIM model (Geyer & Singaravel, 2018).

In other machine learning applications such as speech recognition, it has been proven that enriching
training data with the new cases improves the prediction accuracy of the models (Banko & Brill, 2001;
Halevy, Norvig, & Pereira, 2009). Van Gelder, Das, et al., 2014 studies the effect of increasing the
number of samples on the prediction accuracy, but the effect of enriching training data with various
building shapes is not tested on the energy prediction models. There are few studies which utilize data
from various building shapes for the training of energy prediction models, but the prediction accuracy
is never tested on the building shape outside of the training data (Asadi, Amiri, & Mottahedi, 2014;
Catalina et al., 2008). A manual feature engineering approach was carried out by using domain
knowledge and extracting useful features which have an influence on the target value (Catalina et al.,
2008). Previously developed machine learning energy prediction approaches document limited
applicability of the models on new design cases or the accuracy of the models reduces.

3. Structure of CBML and training of ML model

The concept of CBML is based on decomposing the design artefact in an engineering-related way
and calculating intermediate parameters. In the presented approach the building is composed of a zone
which has building elements such as walls, windows, floors and roofs. Figure 1 shows the CBML
architecture utilized in this paper. ML models at building elements like walls first predict heat flows
through them. Information on heat flows together with design information like area are utilized by ML
models at zone level to make predictions on zone energy demand. Finally, ML model at building level
utilizes information of zone energy demand together with HVAC design information to make the final
energy prediction. Five types of building elements are considered in this model, namely, Wall, Window,
Ground Floor (GFLoor), Intermediate Floor (IFloor) and Roof. The heat flows through the building
components are summed up as Total Heat Flows and provided as input for zone level models i.e.
Heating Energy, Cooling Energy, Lighting Energy and Equipment Energy. The zone level outputs are
used to train the Building Total Energy model. The complete list of features used for training of each

103



model of CBML is available Table 2.
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Figure 1. Structure of component-based machine learning model

The models have two hidden layers with a specified number of neurons. There are three hyper-
parameters which are the number of neurons in first and second hidden layer (NN1 and NN2) and L2-
regularisation which are tuned to obtain a suitable model. L2-regularisation is used to avoid overfitting
issue by adding a squared magnitude of coefficients as penalty term to the loss function (Ng, 2004).
The few combinations of hidden layers NN1 {10, 20}, NN2 {4, 8} and L2-regularisation {0.001,
0.0001, 0.00001} are tested to identify a good combination of hyper-parameters for each model. These
hyper-parameters are tuned each time using the validation data which is 20% of training data. The
performance of each model of CBML is estimated by two parameters which are coefficient of
determination (R?) and mean absolute percentage error (MAPE). R? represents a measure of second
order and it is more sensitive to mid-range values while MAPE is a measure of the first order and more
suitable to low-range values (Géron, 2017). Thus, both parameters are important to assess the model
accuracy. ML models are developed using Keras and TensorFlow as a backend (Chollet, 2015).

4. Research methodology

This section consists of three sub-sections. The section 4.1 details out the data collection process
which is used to train ML models. The section 4.2 explains the method for studying the effect of
enriching the training data. The section 4.3 elaborates the details the method to study the effect of
enhancing features.

4.1 Data collection for training ML models

We have collected data using parametric simulation with four different building shapes, shown in
Figure 2. These are commonly used building shapes in office design and represents architectural
variations at an early stage of design. The first three shapes rectangular (Shapel), plus (Shape2) and L-
shaped (Shape3) building are used for training CBML and the performance of the model is tested on H-
shaped (Shape4) building. There are three options for the number of floors i.e. one floor, two floors and
three floors and 2000 training instances for each of these options. Thus, there a is total of 18000 training
instances, 6000 for each shape. Shape4 mentioned under test data set is explicitly used for estimating
and reporting the accuracy of developed ML models. The detail of design parameters and their ranges
are mentioned in Table 1. We used Sobol sequence to generate a random combination of design
parameters considering uniform distribution in the specified range (Herman & Usher, 2017).
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Figure 2. Architectural designs studied in this paper

Table 1. Detail of parameters with the ranges

Parameter Unit Range A parametric simulation model has
been set up with dynamic energy simulation

Length (meters) 10, 100 tool EnergyPlus to generate data for training
Width (meters) 10, 100 ML models. We have used weather data of
Height (meters) 3.5 Munich which represents most part of
- - - western Europe. The use of the building is
Orientation Degrees 0, 180 office which follows a typical 5-days
Infiltration (ACH) 0.2, 1 schedule. The parameters U Wall,
7 U GFloor, U Roof, U IFloor, and

U_Wall (Wm™K) 0.1,0.75 U Window imply u-value for walls, ground
U_GFloor (W/m*K) 0.1,0.75  floor, roof, intermediate floors and
U Roof (W/m>K) 0.1,0.5 windows respectively. g Window implies
— 1 2o g-value for windows and HC Slab is heat
U_IFloor (Wm™K) 0.1,0.75 capacity for floor slabs. WWR_N/E/W/S
HC Slab (J/m*°K) 800, 1600 stands for window-to-wall ratio in north,
U Wind W/m°K) 0.25.1.5 cast, west and south directions respectively
= .m o (W/nK) ) and chiller COP is the coefficient of
g_Window - 0.1,09 performance for chiller. The heating and
WWR N/E/W/S* . 0.01.0.95 cooling setpoints are 20 and 24°C and
Operating Hours (hours) 8. 10 setback points are 10 and 28°C respectively.

The energy model considers the effect of
Lighting Heat Gain W/m? 5,15 daylight in the zone and reduces the amount
Equipment  Heat of artificial light to achieve lux level of 500.
. W/m? 10,15 : 2
Gain The occupant load is one person per 10 m*.
Chiller COP _ 35 The simulation model is based one-zone-
. per-floor rule i.e. assuming one zone is
present at each level.

Boiler Efficiency - 0.7,0.9

The energy simulation is performed at the Vlaams Super Computer (VSC) using ten nodes
equivalent to 360 cores at a clock speed of 2.3GHz.

4.2 Effect of enriching training data

Each ML model of CBML are trained using the first shape from training data i.e. rectangular
building shape and the performance of ML models is used as a base case. To see the effect of increasing
data, each model of CBML is trained again with additional shape one-by-one. Thus, recording the
accuracy of each model of CBML with increasing data step-by-step will show the effect of enriching
training data. To see the effect of training data, raw features listed in 7able 2 are used.
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4.3 Effect of enhancing features

We are using two types of features: (1) Raw Features and (2) Enhanced Features. Raw Features
are the features easily available for each component in digital models and mostly represents geometric
and thermo-physical properties of the element. As listed in Table 2, Raw Features for building element
level models are area and thermal heat transfer coefficients (u-value). Raw Features for zone level
models represent size (floor area and height), heat flows, infiltration and internal heat gains. Enhanced
Features for building element level model are Raw Features and additional features. For example, heat
flow through wall component depends on the area, orientation and u-value. Additionally, radiation and
the zone which is it associated must be represented in the features to predict heat flows. The zone is
represented by Zone Features i.e. Zone Area, Zone Volume, Total Light Heat Gain, Total Equipment
Heat Gain, Total Infiltration, Operating Hours, Heat Capacity, Solar Radiation, Wall Area x U_Wall,
GFloor Area x U_GFloor, Roof Area x U_Roof, Window Area x U_Window, I[Floor Area x U_IFloor.
Zone Features and Total Heat Flows are used as input for Zone Heating and Cooling Energy model.
Zone area, lighting or equipment heat gain and operating hours are used as a feature for lighting and
equipment energy models. For Building Total Energy, both features represent the size of the building,
system efficiency and energy outputs from zone level models.

Table 2. Details of features used in training each model of CBML

ML Model Raw Features Enhanced Features
— . . area, orientation, u-value, radiation,
o Wall area, orientation, u-value
z zone features
= . . . area, orientation, u-value, g-value,
=  Window area, orientation, u-value, g-value D
E radiation, zone features
% GFloor area, u-value area, u-value, zone features
en
-5 Roof area, u-value area, u-value, radiation, zone features
El ~val f '
2 IFloor area, u-value area, u-value, zone features, adjacent
zone features
Heating area, height, light heat gain,
ener i t heat gain, infiltrati
—_ ?y cquipment fieat gam, Mtitraton, zone features, total heat flows
S Cooling operating hours, heat capacity, total
= energy heat flows
O 0 . . . . . . .
£ Lighting area, light heat gain, operating area, total light heat gain, operating
N energy hours hours
Equipment area, equipment heat gain, area, total equipment heat gain,
energy operating hours operating hours
&0 total floor area, total volume, boiler total floor area, total volume, boiler
= T; Total efficiency, chiller COP, lighting efficiency, chiller COP, lighting
S 2 energy energy, equipment energy, heating  energy, equipment energy, heating
/M

energy, cooling energy

energy, cooling energy

We are using deep learning neural network architecture for training ML models which is a black-
box estimator. To understand the importance of features in such ML model, we used permutation
importance technique described in Breiman, 2001 and implemented using python library developed by
Korobov & Lopuhin, 2016. The calculation of feature importance using the permutation importance
technique is an iterative process. We have used 25 iterations to get reliable results. This step will give
the feature importance of each feature in ML models and thus useful to know how enhancing the feature
can be useful for further development.
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5. Results

In this section, the prediction accuracy of CBML is documented to observe the effect of enhancing
training data and features. The effect of enhancing training data is presented in section 4.1 and the effect
of enhancing features is presented in section 4.2.

5.1 Effect of increasing training data

CBML is initially trained using the simulation data from Shape! (rectangular-shaped building). In
the next step, the training data is enriched with the simulation data from Shape?2 (plus-shaped building)
and finally, the simulation data from Shape3 (L-shaped building) is also used for the training of ML
models. The performance of each ML model of CBML, recorded in terms of R? and MAPE, is presented
in Figure 3. Total Heat Flows is the sum of heat flows through the building components for a zone. The
point (+) represents the performance of the ML model, the solid line represents the trends in the
performance with respect to the number of shapes and the dash-dot line represents the linear-fit of the
trend line. The performance of Window and IFloor Heat Flow models is not plotted in this figure as it
will not fit in the scale. Table 3 should be referred for the prediction accuracy of these component
models. In most of ML models, the accuracy increases with the increase in training data, but it is not
always the same. There is not much improvement in R? values for zone level or building level models
as the values are quite high with Shapel also. But the MAPE improves for these models with the
increase in the data, showing improvement in low-range values.

Heat Flow Models Zone Energy Models Building Energy Model
200 4 .
— 150 1 —
& 100 A a
< <
= =
50 - \

1 2 3 1 2 3
Shapes Shapes
— o 1.001 4 ; '
0.96 {4——"""" . . _
— " " 0.9974
o 0.94 4 o 0.98 1 o
3 3 3
2 0.92 4 2 3 0.9972 -
x & 0.96 x
0.90 A
0.88 0.94 0.9970 -
1 2 3 1 2 3 1 2 3
Shapes Shapes Shapes
== \Wall Heat Flow == Heating Energy == Total Energy
GFloor Heat Flow Cooling Energy
== Roof Heat Flow == Lighting Energy
Total Heat Flows Equipment Energy

Figure 3. Effect of increasing training data on the prediction performance of ML models
5.2 Effect of enhancing features

Each model of CBML is trained using two types of features — raw and enhanced features as mentioned
in Table 2. The performance of each ML model is recorded in terms of MAPE and R? and presented in
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Table 3. 1t has three training scenarios of CBML. First, Raw Features (Shapel), which means the
training data is used from Shapel using Raw Features. Second, Raw Features (Shapel-3) means the
training data is used from Shapel, Shape2 and Shape3 using Raw Features again. Third, Enhanced
Features (Shapel-3) implies the same training data as the previous step but with Enhanced Features. It
should be noted that there is a significant improvement in MAPE for each ML model. The accuracy of
IFloor and Window Heat Flow model improves with the use of enhanced features. The accuracy of zone
level models improves much more with the use of enhanced features compare the increasing in the
training data. There is a similar improvement in the building energy model after increasing the training
data or enhancing the features.

Table 3. Effect of training data and features on prediction accuracy of CBML

Feature and Shapes Raw Features Raw Features Enhanced Features
(Shapel) (Shapel-3) (Shapel-3)

Model (10\//([)'?1)]3 R2 (x'?PE R2 (10\//[0'?1)]3 R2
Wall Heat Flow 63.41 0.9584 31.68 0.9652 22.97 0.9889
Window Heat Flow 18.05 0.9406 814.03 0.9745 328.61 0.9922
GFloor Heat Flow 14.09 0.9660 22.96 0.9403 8.95 0.9882
Roof Heat Flow 18.67 0.9649 13.30 0.9671 7.70 0.9888
IFloor Heat Flow 340.46 0.0145 349.16 0.0143 71.24 0.9885
Total Heat Flows 189.97 0.8886 160.82 0.9003 91.73 0.9863
Zone Heating Energy 9.623 0.9908 8.64 0.9917 4.18 0.9981
Zone Cooling Energy 15.26 0.9410 16.46 0.9459 7.75 0.9838
Zone Lighting Energy 5.30 0.9977 3.90 0.9980 4.60 0.9978
Zone Equipment Energy 2.33 0.9987 2.62 0.9986 1.69 0.9989
Building Total Energy 5.18 0.9970 4.68 0.9974 3.14 0.9988

The feature importance is calculated for the last model only i.e. Total Energy Model trained using
Shapel-3 and Enhanced Features. The results for each model are presented as bar graphs in Figure
4Error! Reference source not found.. The Zone Features consists of several features representing the
characteristics of zone. Hence the feature importance of Zone Features is sum of the feature importance
of these features. For Wall and Window heat flow, the area is the most important feature. For Roof and
GFloor, Zone Features is the most important feature, which means there is some feature in Zone
Features which characterizes the heat flow through these components more appropriately. For /Floor,
Zone Features and Adjacent Zone Features shows similar importance. For Zone Heating Energy model,
Zone Features are quite important compared to Total Heat Flows which represents heat flow through
the building elements. For Zone Cooling Energy model, both Total Heat Flows and Zone Features are
important. For Zone Lighting and Equipment Energy models, the results are self-explanatory. For
Building Total Energy model, Heating Energy has the highest influence, followed by Equipment
Energy, Lighting Energy, Total Floor Area and Boiler Efficiency.
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Figure 4. Feature importance for each model (enhanced features are marked with red colour)

6. Discussion

The section discusses the applicability and limitations of trained ML models in the wider context.
CBML offers more generalizable structure to perform energy prediction for the building shapes of
architectural complexity. The developed ML models are performing with good accuracy on the design
case outside of the training data set from the perspective of the whole building with its specific
architectural shape. The advantage of components is that their usage stays within the training range. As
a consequence, these models are useful for the energy prediction of building shapes which are not
included in the training case.

It is expected that the prediction accuracy of the ML model will improve with as the training data
increases, but not always. Building Total Energy model is performing better when the training data of
Shapel is enriched with the data of Shape2, but there is no improvement when it is enriched further
with the data of Shape3. Also, there is not much improvement in R? for total energy model which is
close to 0.999 in the first instance itself. It means that the data enrichment is useful to improve the
accuracy for low range values. The building element level models always show improvement after data
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enrichment. For zone level models, sometimes it performs better and sometimes there is no
improvement. There is further investigation required to when enriching data with a new shape will be
useful.

The feature enhancement improves the prediction accuracy of each ML model of CBML. It will
be useful to know which feature influences the accuracy of the ML model as adding all the features may
not be useful. Furthermore, it provides useful information for the selection of features. It is evident from
Figure 3 that the inaccuracies in ML models at building element level may or may not result in the
inaccuracies in zone level models. It depends on the importance of heat flows in the zone level models.
The feature importance for zone level models reveals that the heat flows only influence the Zone
Cooling Energy Model a little and has no almost influence on the Zone Heating Energy Model. Also,
Total Energy model at the building level, Heating Energy has the highest influence which is not
influenced by Total Heat Flows. Thus, the inaccuracies in building element level model result in less
inaccuracies in zone level models or building level model.

The training of CBML is performed using the data generated using dynamic energy simulation
tool. The data generation process is simplified following certain assumptions such as one-zone-per-
floor model, no presence of urban context and use of building as office etc. Thus, the CBML is valid
for the assumptions which are used to perform dynamic energy simulation of buildings. Also, it utilizes
weather data for Munich. However, a similar approach can be adopted after generating data with other
assumptions and location.

7. Conclusions

The component-based machine learning model is useful for extending the ML model developed
with some building shapes on the building shapes outside of the training data. The study shows that the
prediction accuracy of the model improves with the inclusion of more building shapes in the training
data in general. Also, it has been shown that CBML can be used to make the energy prediction of a
building shape which is not included in the training data. The accuracy of total energy model at building
level improves from 5.18% to 4.68 % (MAPE) and 0.9970 to 0.9974 (R’) after enriching the training
data with Shape?2 and Shape3. However, it is complex to understand which building shapes should be
used for data enrichment.

The prediction accuracy of each model in CBML improves after enhancing the features. The
feature importance exercise confirms that the additional features influence the prediction accuracy of
ML models. For building element level models, Zone Features are really important as after
improvement, the accuracy of models improve significantly evident with the reduction in MAPE and
increase in R? values. The similar trend follows for zone level models as both performance measures
improve after enhancing the features. This is evident in the feature importance graph also where the
additional features show good importance in the zone level models. We didn’t enhance the features for
total energy model at the building level, but more accurate prediction at building element level and zone
level models improves its prediction accuracy. The accuracy of total energy model at building level
improves from 4.68% to 3.14 % (MAPE) and 0.9974 to 0.9988 (R°) after enhancing the features. But
the features should be selected more carefully for the development of each model of CBML as all the
additional features may not be important to improve the prediction accuracy. Thus, the feature
enhancement should be supplemented with the calculation of feature importance for each model. It is
useful for the identification of relevant features for each model. The overall accuracy of Total Energy
model at building level improves from 5.18% to 3.14% (MAPE) and 0.9970 to 0.9988 (R’) after
enriching training data and enhancing the features.
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