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Abstract 
The Architecture, Engineering, Construction, and Operation (AECO) industry is beginning to 
explore the potential of Digital Twins. These applications range from prototyping to simulations, 
incorporating technologies like Building Information Modeling (BIM), the Internet of Things 
(IoT), and Artificial Intelligence (AI). The industry is at an early stage of Digital Twins maturity, 
focusing on integrating dynamic, predictive, or simulated data. However, there’s ambiguity 
regarding advanced Digital Twins, with terms like cognitive, prescriptive, autonomous and 
intelligent Digital Twins used inconsistently. This research aims to clarify and standardize 
terminology and understanding of next-generation Digital Twins, focusing on the last two 
maturity levels. This research will provide AECO practitioners with a comprehensive 
understanding of these advanced Digital Twins, guiding their selection based on specific needs 
and advancing research for more accessible and cost-effective Digital Twins while maintaining 
functionality. Ultimately, this research aims to unlock the full potential of Digital Twins in the 
AECO industry. 

Keywords: AECO; next-generation Digital Twins; Digital Twins’ maturity; Cognitive; Prescriptive; 
Autonomous; Intelligent.   

1 Introduction 
The concept of Digital Twins has gained signi icant traction in several industries, including 
aerospace and defense, agriculture, food and beverage, intech, healthcare and life sciences, 
manufacturing, mobility and transportation, natural resources, telecommunication, and the 
architectural, engineering, construction and operations (AECO) industry. For the AECO industry, 
Digital Twins are of key interest because of their signi icant contribution to maximizing the 
ef iciency of every stage of construction. This includes prioritizing safety and managing costs 
effectively; evaluating intelligent building analytics and predictive data from completed 
structures to guarantee optimal performance; analyzing the effects on sustainable practices, such 
as circular economy principles and reducing carbon emissions; providing precise design and 
documentation for seamless coordination across various domains; and implementing 
streamlined and automated operational procedures to enhance overall work low (Digital Twin 
Consortium 2024). 

Several researchers investigated the de inition of Digital Twins, their applications in the built 
environment, and the associated challenges (Boje et al. 2020; Sacks et al. 2020; Camposano et al. 
2021; Agrawal et al. 2022; Ammar et al. 2022; Shahzad et al. 2022). Recently, AlBalkhy et al. 
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(2024) conducted a systematic literature review of the published research and industry reports 
on Digital Twins in the built environment. The authors reviewed 228 publications, among which 
82 papers were published in 2023, and 78 papers were published in 2022, indicating a noticeable 
interest increase in the concept despite the late adoption compared to other industries. They 
were able to identify 38 de initions. However, this lack of clarity and consistency on a common 
de inition poses a risk, as an inadequate or ambiguous de inition and elucidation of a Digital Twin 
and its implementation might lead individuals to dismiss it as mere hype (Wright & Davidson 
2020). Consequently, once the hype subsides and the inevitable backlash ensues, the ultimate 
level of interest and utilization—the “plateau of productivity”—may fall signi icantly short of the 
technology’s maximum potential (Wright & Davidson 2020).  

Although there’s growing interest in digital transformation in the AECO industry, the extent 
of implementation of Digital Twins is largely undisclosed and possibly limited. Many existing 
studies focus on conceptual frameworks or propose Digital Twin solutions rather than assessing 
real-world implementation. This indicates that while there’s enthusiasm for Digital Twins, 
tangible applications and widespread adoption are lacking, hindering its dissemination (AlBalkhy 
et al. 2024). The applications of Digital Twins in the AECO industry are still in their early stages, 
and this could pertain to an array of challenges. Among these challenges is the lack of awareness 
of the concept’s full potential and understanding of the different levels of the Digital Twin 
ecosystem (Ammar et al. 2022; AlBalkhy et al. 2024). This ambiguity makes it dif icult for 
stakeholders to compare and evaluate alternative Digital Twins solutions, potentially resulting in 
inconsistencies and inaccuracies in representing actual assets. Therefore, to establish a higher 
level of Digital Twins readiness in the AECO industry, it is important to improve the maturity of 
Digital Twins in the sector and clearly distinguish between the different functionalities, enabling 
technologies, and capabilities.  

2 Research Objectives and Approach  
This research investigates the current awareness of Digital Twins’ full potential and captures 
next-generation Digital Twins' functional and technical requirements in the AECO industry. The 
research methodology adopted is presented in Figure 1 and discussed in the following sections 
and sub-sections.  
 

 
Figure 1. Research Methodology Overview 

3 Overview of Existing Digital Twin Maturity Models 
A Digital Twins maturity model serves as a valuable instrument for gauging the evolving benefits 
garnered from a Digital Twin’s capabilities (Eirinakis et al. 2020). Following identifying these 
benefits, the subsequent vital phase in crafting a maturity model entail delineating the attributes, 
parameters, and functionalities of Digital Twins. These attributes, parameters, and functionalities 
can be conceptualized across multiple dimensions and rubrics within the maturity model to 
differentiate their growing system capability and capacity along a specified trajectory (Chen et al. 
2021; Scheibmeir & Malaiya 2022). The maturity stage of a specific technology is evaluated by 
measuring the technology readiness level (TRL). Each technology project undergoes assessment 
based on predefined parameters for each level of technological advancement, leading to the 
assignment of a TRL rating reflecting the project’s progress (Manning 2023). The existing 
maturity models for Industry 4.0 can inform the development of a maturity model for Digital 
Twins (Agostini & Filippini 2019). These models often encompass dimensions that address 
overarching aspects such as people and culture, which encompass skills, organizational 
structures, and processes alongside technology (Cognet et al. 2019).  
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Among the most cited Industry 4.0 maturity index studies is the one developed by (Zeller et 
al. 2018), which defined six stages in the Industry 4.0 development path. These stages are: 1) 
computerization, 2) connectivity, 3) visibility, 4) transparency, 5) predictive capacity, and 6) 
adaptability. Following suit, several scholars, researchers, and industry pioneers developed 
maturity levels for Digital Twins. We identi ied thirteen Digital Twin Maturity models to 
understand how industries classify Digital Twin maturity. These sources came from industries 
including system engineering (Madni et al. 2019; Scheibmeir & Malaiya 2022), electronics and 
telecommunications (Kim 2020), information systems and automation (Kharche 2022), data 
science (Rao 2022), software technology development (Haziyev et al. 2022; Deleu 2023), energy 
(Nhede 2018), manufacturing (Hu et al. 2023), and the AECO industry (Chen et al. 2021; Mêda et 
al. 2021; Autodesk 2024; buildingSMART International 2024) 

The maturity level names and their descriptions were extracted from each maturity model. It 
was noticed that industries used different terminology to describe Digital Twin maturity levels. 
Based on the given descriptions and to facilitate analysis, these descriptions were used to group 
the various terminologies, regardless of their speci ic names. Each group was then assigned a 
common maturity level name that best matched the described functionality of the group. For 
instance, for a Level 5 Digital Twin, Rao (2022) de ined “Adaptive Autonomous Twins” as a twin 
capable of understanding and learning changes in behavior and response to environmental 
uncertainties. Conversely, Mêda et al. (2021) de ined Level 5 as an “Intelligent twin,” a self-
learning and self-regulating twin capable of taking corrective and preventive actions to increase 
building performance. Since both these twins focused on self-learning to automate response to 
environmental changes, they were clustered as “Adaptive Autonomous Twins.” Figure 2 presents 
the relationship between the Digital Twin maturity level and the denoted level description.  

 
Figure 2. Existing Digital Twin Maturity Levels and the used level naming 



Ammar et al. 2024 A Template for the CIB W78 2021 Conference 

Proc. of the CIB W78 Conference 2024, October 1st-3rd 2024, Marrakesh, Morocco 

The developed Sankey diagram (Figure 2) shows the discrepancy in the terminology used by 
different investigated maturity models to describe a Digital Twin and the inconsistency in 
terminology associated with each maturity level. For instance, when considering Digital Twins 
with maturity at levels 0, 1, and 2, fewer branches are observed in the igure, showcasing a 
consensus in naming and understanding of the functionality of such Digital Twins. This can be 
attributed to the extensive research on these Digital Twins, which has led to a common 
understanding of their utility, enabling technology, and functionality. However, more branches 
are observed at the advanced stages of Digital Twins (i.e., levels 4, 5 , and 6) leading to an 
ambiguity in understanding where the utility of these twins exists, what their functionality should 
be, and what enabling technologies should be used. This ambiguity re lects an initial 
understanding of these levels due to developing research along the development path of Digital 
Twins.  

4 Advanced Digital Twins Systematic Literature Review  
To develop a comprehensive understanding of advanced Digital Twins, a systematic literature 
review was conducted using the Scopus database. The review focused on papers published 
between 2018 and 2024, in English, encompassing journal and conference papers. The search 
string used was “Digital twin” AND “keywords” AND (“AECO” OR “Architecture” OR “Engineering” 
OR “Construction” OR “Operation”). Keywords included adaptive, autonomous, cognitive, 
intelligent, and prescriptive since these terms were mainly used to describe advanced Digital 
Twins (Figure 2). Approximately 900 papers were identi ied. Abstracts were reviewed, and 106 
relevant papers were selected and managed using Mendeley software. After removing duplicates, 
99 unique papers were analyzed. VOSviewer software was used for qualitative analysis to map 
relationships between terminologies, using a thesaurus ile to standardize terms and binary 
counting for reliable data analysis. The analysis results are presented in Figure 3.  

 

 
Figure 3. Keywords co-occurrences analysis 

The analysis showed that the 111 keywords can be gathered in ive clusters with 1640 links. 
The first cluster (in purple) encompassed terms linked to “adaptive digital twins,” such as “real-
time sensors data,” “monitoring,” “maintenance,” and “prescriptive maintenance.” The second 
cluster (in green) is related to human/user adaptation, including keywords such as “virtual 
environment,” “virtual representation,” “virtual reality,” “situation,” and “decision-making 
process.” The third cluster (in red) is linked to the “cognitive digital twin” with keywords 
including “understanding,” “lifecycle,” “interoperability,” “cognitive ability,” “IoT,” and 
“perspective.” The fourth cluster (in blue) is related to “federated learning,” “deep reinforcement 
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learning,” “processing,” “performance,” and “industrial internet.” The fifth cluster (in yellow) is 
linked to “autonomous decision making” and “automation” with keywords such as “enterprise,” 
“complex systems,” “operator,” “behavior” and “validation.” These clusters showcase an overlap 
between the functionalities of advanced Digital Twins, requiring a more detailed overview of their 
use cases and enabling technologies.   

5 Advanced Digital Twins in the AECO Industry  
Among the 99 reviewed papers, 38% were sourced from manufacturing and industrial 
engineering, followed by computer science (36%), while research related to the AECO industry 
and advanced Digital Twins accounted for 26% of the published papers. A detailed review of the 
identi ied papers related to the AECO industry was conducted, and the type of research, research 
contribution, and enabling technologies are summarized in Table 1. Each category of advanced 
Digital Twins sorted alphabetically is further discussed in the following sub-sections.  

Table 1. Advanced Digital Twins applications in the AECO industry  
Advanced 
Digital Twin 

Type of 
Research 

Research contribution & enabling 
technologies   

Ref. 

 
Adaptive 
Digital Twin  

Development 
& pilot study 

They integrated a physics-based structural 
model and sensor data to adapt to changes in 
the environment and member properties. 

(Miao et al. 
2022) 

Autonomous 
Digital Twin 
  

Applied 
research 

They developed a Digital Twin & human-robot 
collaboration to optimize the assembly 
process of complex-shaped architectural 
structures. 

(Ye et al. 
2022) 

Simulation-
based research 

They used Digital Twins to reassign 
multiskilled workers in offsite construction to 
facilitate the implementation of automated 
reassignment strategies and provide a 
platform for evaluating the impact of 
operation interventions in offsite construction 
settings.  

(Barkokeba
s et al. 
2022) 

Framework & 
applied 
research 
 

They integrated AI in an audio-based Digital 
Twin for autonomous monitoring, 
optimization, and management of roadway 
construction. 

(Deria et al. 
2022) 

Conceptual 
framework 
 

They proposed a six-layer Digital Twin model 
for mining processes by leveraging big data 
technologies and machine learning for 
predictive maintenance.  

(Mostafa et 
al. 2021) 

Case Study They utilized IoT sensors, crowd simulations, 
and agent-based simulations to study and 
manage the behavior of building occupants 
and effectively communicate provisions to 
end-users. 

(Bolpagni 
et al. 2023) 

Cognitive 
Digital Twin 

 

Conceptual 
framework 

They integrated deep learning to support real-
time interpretations & decision-making 
support of complex buildings based on Digital 
Twin cognitive abilities.  

(Kor 2021; 
Kor et al. 

2023) 

Conceptual 
framework  

They integrated machine learning & analytical 
tools throughout the project lifecycle to 
facilitate the implementation & evaluation of 
consistent cognitive Digital Twins for building 
lifecycle management.  

(Yitmen et 
al. 2021) 

Framework and 
pilot study  

They developed a BIM-GIS web-based platform 
as an asset management system app to 
provide real-time visualization of the asset in 
3D maps connected to analytical dashboards 
for management support.   

(Meschini 
et al. 2022)  

Conceptual 
framework  

They investigated the potential of integrating 
Digital Twins with AI & IoT into modular 
production systems. Also, they investigated 
combining knowledge graphs & cognitive 
modular production to systems with 

(Jaryani et 
al. 2023) 
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perception & decision-making capabilities to 
enable autonomous operations.  

Intelligent 
Digital Twin 

Framework, 
implementation 
& case study 

They integrated BIM, data collected by sensors 
and IoT devices, to create a cyber-physical 
production system for precast concrete 
elements. 

(Kosse et 
al. 2022) 

Implementation 
& case study 

They used RFIDs to collect mechanical 
parameters at every step of the excavation 
process, according to which the geometric 
model of the pit is updated. Using FLAC3D 
interface and FISH language, risks during 
foundation pit excavation are captured and 
analyzed. 

(Sun et al. 
2023) 

Framework & 
implementation 

They utilized virtual space defined by Digital 
Twin models using long-range radio and IoT 
to carry out hoisting path planning using 
Dijkstra’s algorithm for prefabricated 
components.  

(Zhao et al. 
2022a) 

Framework & 
implementation 

They collected and analyzed field data from 
the backpropagation neural network-based 
Digital Twin to safely assess structural 
components.  

(Zhu & 
Wang 2022) 

Framework & 
case study 

They integrated BIM, IoT, & smart construction 
platforms to improve construction and 
management efficiency, energy consumption 
control, and other aspects of steel structure 
construction.  

(López-
Almansa et 
al. 2024) 

Framework & 
case study 

They developed a Digital Twin that utilized 
IoT, sensor networks, & long-range networks 
to offer a unified implementation to optimize 
space management applications and services. 

(Hossein 
Motlagh et 
al. 2024) 

Framework & 
case study 
 

They used powerful computing and analysis 
capabilities of 3D GIS, big data, & BIM to 
develop a Digital Twin that can simulate and 
predict production activities in the physical 
twins.  

(Zhou et al. 
2021) 

Framework 

They developed a Digital Twin to collect, 
process, and analyze data, then output 
diagnostic and predictive results using an 
artificial neural network to support the 
decision-making of related work.  

(Zhao et al. 
2022b) 

Prescriptive 
Digital Twin 
 

Conceptual 
framework 

They developed computer-aided engineering 
(CAE) simulation strategies and deep learning 
during the structure's life span. 

(Malek et 
al. 2021) 

Conceptual 
framework 
 

They integrated big data, cloud computing, AI, 
augmented reality (AR), & IoT to develop a 
Digital Twin prescriptive model for physical 
workspaces.  

(Latifah et 
al. 2022) 

Conceptual 
framework 
 

They integrated sensor data to facilitate 
dynamic recalibration of deterioration and 
maintenance models for enhanced decision-
making processes. 

(Momber et 
al. 2022) 

Framework & 
pilot study 
 

They utilized BIM, 3D scanning, image 
processing, finite element method, weigh-in-
motion, fiber bragging sensors, and physics-
informed machine learning. 

(Jeon et al. 
2024) 

5.1 Adaptive Digital Twins  
Industry 4.0 maturity index identifies adaptability as the key goal of digital transformation, 
emphasizing the importance of predictive capabilities for automated actions and decision-
making. Adaptability is achieved when companies use data from digital shadows to make optimal 
decisions quickly and implement automatic responses. This continuous adaptation allows 
companies to delegate specific decisions to IT systems, enabling rapid responses to changing 
business conditions based on the complexity of decisions and cost-benefit analysis (Zeller et al. 
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2018). In the AECO industry, adaptive Digital Twin integrates sensor data and models to reflect 
the current status of buildings, adjusting to changes in the environment and member properties. 
This approach offers a superior solution to challenges faced in traditional structural simulation 
models (Miao et al. 2022). 
5.2 Autonomous Digital Twins 
In the AECO industry, autonomous Digital Twins have been de ined for managing construction 
activities in work zones, offering signi icant bene its such as reducing delays, material wastage, 
and rework due to human errors. These systems facilitate real-time data sharing among 
stakeholders, save manual labor, minimize the need for on-site supervision, and optimize 
resources through systematic planning, thereby cutting project costs (Deria et al. 2022). While 
these advantages are substantial, it is important to note that the autonomous phase of the Digital 
Twin involves implementing interfaces connected back to its physical twin, enabling self-
diagnosing and self-repairing functionalities (Mostafa et al. 2021). However, this technology is 
often categorized as "semi-autonomous," as it incorporates some autonomous functionalities but 
is not yet fully autonomous (Bolpagni et al. 2023). The Digital Twin system, a novel concept in the 
construction ield, is integrated with deep reinforcement learning to autonomously optimize 
construction activities and forecast construction logistics, aiming to reduce delays and enhance 
productivity (Deria et al. 2022). One intriguing aspect of this system is its ability to continuously 
monitor human movements and architectural geometries during the assembly process, updating 
the digital assembly model and automatically providing the assembly robot with feedback to 
make synchronous adjustments (Ye et al. 2022). 
5.3 Cognitive Digital Twins  
From a computer science perspective, cognitive Digital Twins can exhibit advanced intelligence, 
mimic human cognitive processes, and perform autonomous actions with minimal or no human 
intervention (Zhang et al. 2022). These capabilities are facilitated by cognitive science, machine 
learning, and arti icial intelligence, enabling Digital Twins to selectively focus, interpret data, and 
retrieve information and knowledge (Al Faruque et al. 2021). In manufacturing and system 
engineering, Digital Twins with cognitive abilities are viewed as advanced dynamic models that 
use AI-powered human-like cognition and estimation-based methods to predict and enhance 
performance (Sicard et al. 2023). In the AECO industry, cognitive Digital Twins possess abilities 
to detect complex actions and optimize dynamic processes, aiding decision-making. However, 
awareness of the impact of integrating technologies like cognitive Digital Twins, machine 
learning, cyber-physical systems, big data, AI, and IoT is limited. These technologies form self-
learning hybrid models with proactive cognitive capabilities throughout various project phases 
(Kor 2021; Yitmen et al. 2021; Kor et al. 2023). Additionally, integrating knowledge graphs, which 
structure and interlink entities and their relationships, can enhance decision-making and 
autonomous operations (Jaryani et al. 2023). Furthermore, combining BIM-GIS with cognitive 
Digital Twins improves the management of complex systems like university building portfolios 
and smart cities, enabling buildings to act autonomously and respond dynamically to 
environmental changes, facilitating timely decisions based on real-time conditions (Meschini et 
al. 2022). 
5.4 Intelligent Digital Twin 
Intelligent digital twins are autonomous platforms integrating physical and virtual twins 
bidirectionally (Mêda et al. 2021). In the AECO industry, these twins enhance construction 
safety and accuracy when developed without errors and biases. They operate independently 
using self-learning and self-regulating algorithms. They leverage IoT, machine learning, 
optimization algorithms, RFIDs, and big data to optimize construction processes, facility 
maintenance, space management, quality assurance, and energy-efficient controls. These twins, 
also known as decision-making Digital Twins, incorporate feedback loops from production 
into BIM, aiding in quality assurance by comparing actual geometry to design elements (Kosse 
et al. 2022). However, implementing these Digital Twins involves high costs due to the 
extensive resources required for sensor installation and data monitoring, and their effectiveness 
is limited by the need for realistic and accurate training data (Sun et al. 2023). 
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5.5  Prescriptive Digital Twins 
From a manufacturing perspective, prescriptive Digital Twins use bidirectional communication 
to adjust the physical environment for dynamic optimization. Unlike traditional descriptive and 
diagnostic analytics, prescriptive analytics predict future outcomes and recommend actions to 
achieve desired results (Reisch et al. 2023). In the AECO industry, prescriptive Digital Twins go 
beyond monitoring and predicting by making autonomous decisions through digital 
representations and decision support models, completing a full control loop without human 
involvement (Latifah et al. 2022). This concept evolved into the LIVE Digital Twin, which supports 
modeling, inspection, and maintenance phases, enhancing operational excellence and predictive 
maintenance (Malek et al. 2021). The prescriptive Digital Twin framework aims to streamline 
maintenance operations with prede ined action plans, optimization strategies, and self-
diagnostic capabilities. It also introduces an advanced information system and data schema to 
improve data management and reduce human intervention, enhancing operational ef iciency and 
reliability (Jeon et al. 2024). 

6 Conclusion, Limitations, and Future Studies   
The AECO industry is progressively exploring the potential of Digital Twins, leveraging 
technologies like BIM, IoT, and AI for various applications from prototyping to simulations. 
However, the industry is still in the early stages of Digital Twin maturity, primarily focusing on 
integrating dynamic, predictive, or simulated data. This research aimed to clarify and standardize 
the terminology and understanding of advanced Digital Twins, speci ically adaptive, autonomous, 
cognitive, intelligent, and prescriptive Digital Twins. By providing a comprehensive overview of 
existing Digital Twins maturity models and research in the AECO industry and other industries, 
this study guides AECO practitioners in selecting appropriate Digital Twin technologies based on 
their speci ic needs, thereby advancing the adoption and functionality of Digital Twins in the 
industry. The insights gained are expected to enhance the accessibility and cost-effectiveness of 
Digital Twins, ultimately unlocking their full potential in the AECO sector. Further studies should 
also investigate these technologies' practical implementation challenges and bene its in real-
world AECO projects. Longitudinal studies examining the evolution and impact of Digital Twins 
over time would provide valuable insights into their effectiveness and areas for improvement. 
Additionally, exploring the integration of emerging technologies with Digital Twins could reveal 
new opportunities for innovation in the AECO industry. 
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