
Portable Model Predictive Controller System Design
for Demand Side Management using Semantic Web
Technologies

Lasitha Chamari (corresponding author), (l.c.rathnayaka.mudiyanselage@tue.nl)
Eindhoven University of Technology, The Netherlands

Shalika Walker, (shalika.walker@kropman.nl)
Kropman B.V., The Netherlands

Lu Wan, (lu.wan@de.bosch.com)
Robert Bosch GmbH, Germany

Ekaterina Petrova , (e.petrova@tue.nl)
Eindhoven University of Technology, The Netherlands

Pieter Pauwels, (p.pauwels@tue.nl)
Eindhoven University of Technology, The Netherlands

Keywords: Brick Ontology, MPC, RDF, Semantic Web, SHACL, SOSA/SSN

Abstract
A smart building relies on heterogeneous information systems, with data originating
from different sources and represented in various formats. Semantic Web technologies
allow connecting these disparate data sources by standardizing metadata with ontolo-
gies and enriching information with logical relationships. The latter enables not only
shared understanding and interpretability by machines but also querying and reasoning
capabilities. Brick and SOSA/SSN are such widely used ontologies in the smart building
domain. These ontologies are currently used to semantically describe physical or virtual
assets in a building. Building on these ontologies, we propose an ontology to describe
a Model Predictive Controller (MPC) system. This MPC is designed as a Demand Side
Management strategy for an office micro-grid system. The proposed ontology comple-
ments the use of SemanticWeb technologies in the smart building. It allows the designed
MPC application to seamlessly modify to a different building for both simulation and
experimental purposes by communicating with necessary data sources with using the
knowledge embedded in the semantic graphs.

1.Introduction
The complexity and diversity of buildings, including their smart control systems such as
Model Predictive Controllers (MPC) and Fault Detection and Diagnostic systems (FDD),
challenge the transferability of these systems to other buildings (Balaji et al., 2018; Di-
bowski et al., 2016). While implementing a simpler system such as a rule-based-controller
to another similar building setup may seem straightforward, sophisticated data-driven
systems such as MPC are difficult to re-configure to a new building. The reason for this
complexity is the intensive prior knowledge that is required about a building and its

mailto:l.c.rathnayaka.mudiyanselage@tue.nl
mailto:shalika.walker@kropman.nl
mailto:lu.wan@de.bosch.com
mailto:e.petrova@tue.nl
mailto:p.pauwels@tue.nl

Chamari, L. et al. Portable Model Predictive Controller Design

systems to i) model the given building and the systems and ii) identify and interpret the
data correctly. When the knowledge about the building and its components are not rep-
resented formally, it is difficult to modify a control system to a new environment. The
development of ontologies in the smart building domain has enabled the standard rep-
resentation of the knowledge of the physical and virtual assets in buildings. A number
of studies (Balaji et al., 2018; Janowicz et al., 2019; Rasmussen et al., 2020; Sagar et al.,
2018) have elaborated on the design of such ontologies and the use of Semantic Web
technologies in the building (control) domain. Building on these recent developments,
it is possible to extend this knowledge representation to improve the portability of con-
trol systems (also called application) to new environments. However, when it comes to
data-intensive control applications such as a MPC, the literature lacks evidence on how
to utilize knowledge representation to make them portable among buildings. Therefore,
taking a MPC as a use case, we investigate how to effectively utilize knowledge repre-
sentation and Semantic Web technologies in sophisticated control applications to im-
prove their semantic interoperability between different buildings, making them highly
portable. We aim to do that by reusing existing domain ontologies, creating new ones
when necessary, and introducing a software service to execute the tasks required to
modify the MPC system to the new building.
The remainder of the paper is structured as follows. Section 2 discusses the relevant
literature and the gap that exists when it comes to the data-driven control domain and the
transferability of MPC between buildings in particular. Section 3 describes the method
of developing new ontologies and their implementation by means of a service-oriented
architecture. Section 4 introduces the software architecture designed to manage the
developed knowledge-base. In section 5, we demonstrate the proposed knowledge-base
and its applicability using the MPC example. Section 6 concludes the paper.

2.Related Works
Over the past decade, numerous ontologies have emerged within the building domain,
covering a wide range of areas, such as; Industry Foundation Classes (IFC) 1 vocabu-
lary for modeling the design and engineering aspects of buildings, Building Topology
Ontology (BOT) (Rasmussen et al., 2020) for modeling building topology, Real Estate
Core (REC) (Hammar et al., 2019) for asset management, etc. More recent develop-
ments include the ontologies in the building automation and control systems domain
such as the Brick ontology (Balaji et al., 2018) and Haystack tagging system2. The
Semantic Sensor Network ontologies (SOSA/SSN) (Janowicz et al., 2019) have formed
the core of modelling the IoT and sensor network aspects of smart buildings. Build-
ing upon SSN, the Semantic Smart Sensor Network (S3N) (Sagar et al., 2018) expands
the capabilities of describing smart sensors and their computational profile. With the
introduction of the W3C Thing Description framework3 for IoT, the Thing Description
ontology (TD)4 is introduced for modeling properties, actions and events of physical or
virtual devices (Things). These ontologies adhere to the Resource Description Frame-
work (RDF) data model 5. RDF provides a way to describe resources and their relation-
ships in a machine-readable format, consisting of subject-predicate-object triples, form-
ing a graph-based knowledge representation. For example, RDF enables to represent
the information that “There is a CO2 Sensor located in a Space identified by IFC GUID

1https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
2https://project-haystack.org/
3https://www.w3.org/TR/wot-thing-description11/
4https://www.w3.org/2019/wot/td
5https://www.w3.org/TR/rdf-primer/

2 CIB W78 conference 2024, Marakesh, Morrocco

Chamari, L. et al. Portable Model Predictive Controller Design

“0KLkXPBfvES9D1y7EjijkE” on the 9th Floor of the Atlas Building on TU Eindhoven
campus Site”(Chamari et al., 2022).
The use of the above-mentioned ontologies has been extensively demonstrated in var-
ious applications such as knowledge-based fault detection in heating, ventilation and
air-conditioning (HVAC) systems (Delgoshaei et al., 2017), portable data-driven applica-
tions (Balaji et al., 2018), Building Information Model (BIM) and sensor data integration
(Chamari et al., 2022), management of on-device IoT applications (Ren et al., 2022), etc.
Besides devices and systems, recent literature also shows attempts to model software
artifacts using ontologies. Dibowski et al., 2016 use an ontology to specify requirements
and configurations of Fault Detection and Diagnosis (FDD) algorithms in a machine-
interpretable manner. This ontology-based specification, along with an FDD ontology
and the BIM model is used to identify a list of FDD algorithms that can run in a given
building. Similarly, Ren et al., 2022 propose a semantic schema for describing the meta-
data of a Neural Network (NN) and an event processing rule as an example for dis-
covering a list of edge algorithms that can run on an IoT device in a decentralized IoT
network. The metadata description includes hardware requirements such as memory,
and NN weights. These examples highlight the growing trend of leveraging semantic
descriptions to enhance the interoperability, reusability, and machine interpretability of
software artifacts in various domains.

3.Method
In our previous study on reference architecture for data-driven buildings (Chamari et al.,
2023), we introduced a service-oriented architecture for a smart building. The idea of the
architecture is to implement data-driven applications as reusable services. In this study,
the MPC system follows this service-oriented pattern. The MPC system is designed for
Demand Side Management (DSM) in an office building. The office building’s micro-grid
consists of four Electric Vehicle (EV) charging poles, each 11 kW (3 phase/16 A), a solar
photovoltaic array (16.9 kW), the building load (on average 12 kW) including plug loads,
an Air Handling Unit (AHU), a chiller, and the connection to the grid. The objective of
the MPC system is to flatten the load incurred on the building by EV charging. Here,
the MPC system is a collection of the following services; 1) the MPC algorithm, 2) a
building load forecasting algorithm, 2) an EV user schedule handler, 3) a PV forecast
handler, and 4) an electricity price forecast handler. All these components are designed
as smaller reusable services. In addition to the MPC system’s objective to flatten the
building electrical load, the aim is to develop the MPC system as an portable system
using formal knowledge representation.
Fig. 1 describes the workflow of the proposed method. First, the building and its sys-
tems such as its equipment, data points, time series references, and any other external
references need to be described in a knowledge graph (hereafter called building graph
in Fig. 1), using the ontologies in TBox. Then, the metadata of the data-driven applica-
tion (hereafter called an artifact) that the above services embed need to be described
formally. To achieve the above, first, ontologies are designed for artifacts by extending
well-established ontologies as shown in TBox. The metadata of these artifacts are de-
fined using the above ontologies, leading to an artifact graph describing the concepts
such as inputs and outputs, and their references to a building’s systems by linking the
concepts with the building graph. This artifact graph is used to generate the shapes
(hereafter called shape graphs), representing the data requirements of an artifact for-
mally. These shape constraints are based on the Shape Constraint Language (SHACL)6,

6https://www.w3.org/TR/shacl/

3 CIB W78 conference 2024, Marakesh, Morrocco

Chamari, L. et al. Portable Model Predictive Controller Design

Figure 1: System architecture diagram - RDF Service for data-driven applications

the W3C standard designed to validate RDF data against a set of conditions. They are
originally used to ensure that the RDF data adheres to specific structural and integrity
rules. However, in this case, we can rely on shapes to check the compatibility of our arti-
facts with a different building by validating the building graph against the shape graphs
of our artifacts.
The portability of MPC system is achieved by comparing the building graph against the
shape graphs generated according to the requirements of a given artifact. If they are
compatible, then SPARQL Protocol and RDF Query Language (SPARQL) queries spec-
ifying constraints and patterns of triples are used to traverse the building graph and
locate the necessary data points that match, leading to a successful modification of the
MPC system to a different building.
To avoid individual artifacts such as an MPC or FDD system having to implement the
above semantics-based logic, all the semantic tasks are dedicated to a new service called
theRDF Service. This service is responsible for the generation, management and query-
ing the semantic graphs on behalf of artifacts. Therefore, this service is also exposed us-
ing a RESTful web interface. The proposed RDF services is implemented as a component
in the service-oriented architecture Chamari et al., 2023, enabling other applications such
as the MPC system to interact with it for semantic tasks. As shown in Fig. 1, together
with the Smart Building API, the RDF service facilitates the artifacts for their data and
metadata needs.

4.RDF service for portable data-driven applications
This section first explains the design of ontologies for the MPC system using the pro-
posed ontologies in TBox in Fig. 1. Then, the RDF service to handle the semantic graphs
for applications is described in detail.

4.1.Semantic descriptions
Semantics of Building, Systems and Sensors
Software artifact interact with the existing building and its systems. A formal definition
of the given building, its systems and sensors (building graph) is therefore a prerequisite

4 CIB W78 conference 2024, Marakesh, Morrocco

Chamari, L. et al. Portable Model Predictive Controller Design

to use an artifact described semantically. Here we use the well established BOT ontology
to describe the building topology and the Brick ontology to describe the systems and
sensors.
Semantics of software artifacts
As previously mentioned, the MPC system is a collection of 1) the MPC algorithm, 2) a
building load forecasting service, 3) an EV user schedule handler, 4) a PV forecast han-
dler, and 5) an electricity price forecast handler. In this section, we introduce ontologies
to describe the first three and an additional ontology to describe the common concepts;
namely, mpc ontology, forc ontology, eva ontology and sba ontology. Common concepts
that apply to all artifacts, such as inputs, outputs, KPIs, etc., are described in a main on-
tology (sba) with the aim of making it extensible for future artifacts. When doing that,
the idea is not to start from scratch, but to build on top of a the well known SOSA
ontology which already has the concept of a sosa:Procedure, defined as "A workflow, pro-
tocol, plan, algorithm, or computational method specifying how to make an Observation,
create a Sample, or make a change to the state of the world (via an Actuator)". We reuse
several other existing ontologies to construct the proposed ontologies for components
mentioned. The namespaces and prefixes of reused ontologies and proposed ontologies
are shown below. Four new ontologies are proposed as sba (smart building algorithm),
eva (electric-vehicle algorithm), forc (forecasting) and mpc (MPC algorithm). Since the
PV forecast and electricity price forecast refer only to a time series dataset, and do not
require an algorithm, they do not need a new ontology. The proposed ontologies and
the instantiated semantic graph are illustrated graphically in Fig. 2. For now, these on-
tologies have not been published yet as they are a part of ongoing testing and validation.
The current article contains the results of preliminary local testing.

Listing 1: Existing and new ontologies proposed to describe MPC System
1 # Re-used
2 @prefix sosa: <http://www.w3.org/ns/sosa/> .
3 @prefix unit: <http://qudt.org/vocab/unit/> .
4 @prefix brick: <https://brickschema.org/schema/Brick#> .
5 @prefix ref: <https://brickschema.org/schema/Brick/ref#> .
6 @prefix bot: <https://w3id.org/bot#> .
7 @prefix ssn: <http://www.w3.org/ns/ssn/> .
8 # Proposed
9 @prefix sba: <https://example.org/sba-schema#> .
10 @prefix eva: <https://example.org/sba-ev-schema#> .
11 @prefix mpc: <https://example.org/sba-mpc-schema#> .
12 @prefix forc: <https://example.org/sba-forecast-schema#> .

The following section discusses the design of the sba ontology, forc ontology and mpc
ontology.
Smart Building Ontology (sba): This is the main ontology that describes the common
concepts of a data-driven application. All algorithms are described as a subclass of
sba:SmartBuildingAlgorithm, which is a subclass of sosa:Procedure. The algorithm in-
put and algorithm output are sub-classes of ssn:Input and ssn:Output, respectively. Some
of these inputs are directly linked to Brick entities in the building graph (such as build-
ing load and weather data), whereas the PV forecast, price forecast, weather forecast,
forecasted building load, EV user schedule, ML model and input parameters need to be
semantically standardized using the sba ontology. For that purpose, we introduce the
classes sba:Forecast, sba:MachineLearningModel, and sba:ModelParameters.
Load Forecasting Algorithm Ontology (forc) : The Load ForecastingAlgorithm forc:Load-
ForecastModel is a subclass of sba:SmartBuildingAlgorithm. The output of this algorithm
is an input to the MPC algorithm and is, therefore, recorded in the same way as for any
other time series data. This means that these outputs are recorded in a database dedi-

5 CIB W78 conference 2024, Marakesh, Morrocco

Chamari, L. et al. Portable Model Predictive Controller Design

Figure 2: Instantiating the MPC system’s graph using existing and proposed ontologies.
Full implementation is available via https://github.com/ISBE-TUe/sba-schema

cated to the algorithm with a ref:TimeseriesReference according to the Brick ontology.
Model Predictive Controller Algorithm Ontology (mpc): TheMPC algorithmmpc:Smart-
ChargingMPC is a subclass of sba:SmartBuildingAlgorithm. The output of MPC is defined
as mpc:OptimumEVChargingSetpoints, a subclass of mpc:OptimumSetpoints, which is a
subclass of sba:AlgorithmOutput.

4.2.RDF Service
This RDF service is made of four components: 1) semantic graph of building and artifacts
2) SHACL shapes of artifacts, 3) infrastructure to handle graphs, and 4) RDF Service
API. The semantics of the building, systems, sensors and artifacts are first described as
explained above. Then, based on the semantic graphs of the artifacts, SHACL shapes are
generated for each algorithm and each of their inputs for validating the new building’s
semantic graphs against the required algorithm inputs. This is a one time task and the
idea is to generate these shapes along with the semantic graph of an algorithm when it
is first designed. Then, the shapes are reused when the algorithm is modified to a new
building. Validation with the SHACL shapes gives an idea whether the new building has
sufficient data points to execute the given algorithm. The infrastructure, on the other
hand, requires a semantic storage, time series storage and a document/object storage
to save the semantic graphs and data of the applications. Interactions that are intended
with the graphs are made available using a standard API. The API provides the necessary
endpoints to interact with the created ontologies and existing building graphs. These
endpoints encapsulate the following functionalities:

1. Querying and exploring for building graph, artifact graphs and shape graphs.

2. Read an artifact graph and find its relevant inputs and outputs.

3. Create shape graphs based on an artifact.

4. Check a given building graph against the required inputs of a given artifact using the
shape graphs.

5. Generate configuration files to run an artifact tailored to the given building.
In the final step above, artifacts query the semantic graph of the building, systems and
sensors for entities and relationships using SPARQL. For a given artifact, the query

6 CIB W78 conference 2024, Marakesh, Morrocco

Chamari, L. et al. Portable Model Predictive Controller Design

returns the inputs, their time series reference, and their database reference. In other
words, these constitute the information needed to re-configure the application to the
new environment. Once these are known, the initialization is done, and there is no
need to execute the configuration query again unless the semantic graphs change.
Therefore, once executed, the necessary information is written into a configuration
file within the artifact. As such, the algorithm is ready to run in the new building.

5.Implementation
Developing the artifact graph and shape graphs
The artifact graph and its shape graphs are only generated once and reused later for
other buildings. In our case, the MPC system depends on the building load forecasting
algorithm’s output, the electric vehicle schedule algorithm’s output, the PV forecast, the
electricity price forecast, and the input parameter file. A snippet from the artifact graphs
for the MPC (mpc:EVMPC), forecasting algorithm (forc:LoadForecastAlgorithm) and the
building graph is shown in Listing 2. This graph describes the artifacts using the pro-
posed ontologies for sba, mpc, forc, eva, with their links to Brick entities in the building
graph. Parts of the graph are intentionally removed in the Listing 2 and the reader may
refer to https://github.com/ISBE-TUe/sba-schema for the full semantic graph.

Listing 2: Model Predictive Controller artifact graph
1 # MPC artifact graph
2 inst:bldgSmartChargingMPCAlgorithm a mpc:EVMPC ;
3 ssn:hasInput
4 inst:bldgMPCParameters ,
5 inst:bldgLoadForecastAlgorithmOutput ,
6 inst:bldgPVForecast ,
7 inst:bldgEVSheduleAlgorithmOutput ,
8 inst:bldgElectricityPriceForecast ;
9 ssn:hasOutput inst:bldgSmartChargingMPCOutput .
10

11 inst:bldgMPCParameters a mpc:EVMPCModelParameters ;
12 rdfs:label "MPCParameters" ;
13 ref:hasExternalReference [
14 a ref:TimeseriesReference ;
15 ref:hasTimeseriesId "c29fb1d7-57b2-487f-9456-5aa3e6900520" ;
16 ref:storedAt inst:appdata ;] .
17

18 inst:bldgSmartChargingMPCOutput a mpc:OptimumEVChargingSetpoints ;
19 rdfs:label "SmartChargingMPCOutput" ;
20 ref:hasExternalReference [
21 a ref:TimeseriesReference ;
22 ref:hasTimeseriesId "4a911207-12e1-4c7a-88b7-a217de337c8c" ;
23 ref:storedAt inst:appdata ;] .
24

25 # Building load forecast artifact graph
26 inst:bldgLoadForecastAlgorithm a forc:LoadForecastAlgorithm ;
27 ssn:hasInput
28 inst:bldgOutdoorTemperatureSensor ,
29 inst:bldgSolarRadianceForecast ,
30 inst:bldgOutdoorTemperatureForecast ;
31 ssn:hasOutput inst:bldgLoadForecastAlgorithmOutput ; .
32

33 inst:bldgLoadForecastAlgorithmOutput a forc:BuildingLoadForecast ;
34 rdfs:label "LoadForecastAlgorithmOutput" ;
35 ref:hasExternalReference [
36 a ref:TimeseriesReference ;
37 ref:hasTimeseriesId "889cefd5-0c95-4bf4-8462-8b5b9abc2a40" ;
38 ref:storedAt inst:appdata ;] ; .
39

40 # Building graph
41 inst:bldgWeatherStation a brick:Weather_Station ;
42 brick:hasPoint
43 inst:bldgOutdoorTemperatureSensor ,

7 CIB W78 conference 2024, Marakesh, Morrocco

https://github.com/ISBE-TUe/sba-schema

Chamari, L. et al. Portable Model Predictive Controller Design

44 inst:bldgSolarRadianceSensor ,
45 inst:bldgWindSpeedSensor .
46

47 inst:bldgOutdoorTemperatureSensor a brick:Outside_Air_Temperature_Sensor ;
48 rdfs:label "OutdoorTemperature" ;
49 ref:hasExternalReference [
50 a ref:TimeseriesReference ;
51 ref:hasTimeseriesId "e264add0-9637-4a4a-ba07-42fdf7d86fec" ;
52 ref:storedAt inst:insiteview ;] .

Once the artifacts are described, their shapes can be generated in order to use them in
the implementation process for a different building. For this step, the classes that have a
relationship based on ssn:hasInput can be programatically extracted from artifact graph
using the SPARQL query shown in Listing 3.

Listing 3: Querying for an artifact’s Inputs. Here {algorithm} is a placeholder that holds
the type of algorithm (e.g., forc:LoadForecastAlgorithm, mpc:EVMPC)

1 SELECT ?input ?datapoint ?label ?tsid ?database WHERE {
2 ?algorithm a {algorithm} .
3 ?algorithm ssn:hasInput ?input .
4 OPTIONAL {?input ref:hasExternalReference ?arr .
5 ?arr ref:hasTimeseriesId ?tsid . ?arr ref:storedAt ?db .
6 ?db inst:connstring ?database . ?input a ?datapoint .
7 OPTIONAL {?input rdfs:label ?label . } } }

Modifying the MPC for a different building
Due to the page limit, not all artifacts can be fully explained. Therefore, taking the
building load forecast algorithm (forc:LoadForecastAlgorithm) as an example, this sec-
tion describes the rest of the workflow. For the forc:LoadForecastAlgorithm algorithm, in-
puts extracted are of type brick:Electric_Power_Sensor, sba:OutdoorTemperatureForecast,
sba:SolarRadianceForecast, sba:WindSpeedForecast, sba:BuildingLoadForecastModel, sba:-
BuildingLoadForecastModelParameters, brick:Outside_Air_Temperature_Sensor, brick:Wind-
_Speed_Sensor, and brick:Solar_Radiance_Sensor. Then, this list of classes is used to gen-
erate the shape graphs corresponding to each of them. In this version of the implemen-
tation, we only consider having a ref:hasTimeseriesId property as the required constraint
in order to map the required data points from a building. The shape graph for each target
class is similar to the one listed in Listing 4.

Listing 4: SHACL Shapes generation for each Input. {point} is a placeholder that holds
the target class name

1 inst:AlgorithmInputShape
2 a sh:NodeShape ;
3 sh:targetClass {point} ;
4 sh:property [
5 sh:path ref:hasExternalReference ; sh:minCount 1 ; sh:node sh:NodeShape ;
6 sh:property [sh:path rdf:type ; sh:hasValue ref:TimeseriesReference ;] ;
7 sh:property [sh:path ref:hasTimeseriesId ; sh:minCount 1 ; sh:datatype

xsd:string ;] ;
8] .

The idea of the proposed approach is to improve the portability of the developed appli-
cation by leveraging knowledge graphs. A formal knowledge representation makes that
application agnostic to a particular building, system or sensors, thereby making it highly
portable to a different building. This is done by means of discovering the capabilities of
that new building and adjusting the artifact to new data points.
This is achieved by interacting with the RDF Service described in Section 4.2’s five steps.
An intermediate output when generating the configurations for the building load fore-
casting artifact in Step 5, is shown in Table 1. Although the full list of data points is

8 CIB W78 conference 2024, Marakesh, Morrocco

Chamari, L. et al. Portable Model Predictive Controller Design

Table 1: Data points mapping of the building load forecasting artifact to the new building
graph. (Only five of the data points are shown)

No. Target Class label tsid database

1 brick:Electric_Power-
_Sensor

BuildingLoad 24988dbf-9ca6-40e7-bc24-
104deb8e7672

https://ivs.kropman.nl

2 brick:Outside_Air-
_Temperature_Sensor

OutdoorTemperature 0de8b6d5-7f06-4b58-8493-
924be6c968af

https://ivs.kropman.nl

3 sba:SolarRadianceForecast SolarRadiance aef5c0e8-a480-4153-a8b6-
e8e07756dae4

https://ivs.kropman.nl

4 brick:Wind_Speed_Sensor WindSpeed a6aff25e-943f-4b45-a534-
5f40262a879b

https://ivs.kropman.nl

exhaustive, only a few points are shown here. Here, “tsid” refers to the unique time se-
ries identifier of a particular data point. “database” provides information about the the
URL that needs to be queried to get this data. This table is dynamically filled with the
metadata from the given building. Then, Table 1 is used to generate configuration files
or environment variable files as necessary within the data-driven application. After all
the steps are complete, the MPC system is now modified to the given building.

6.Conclusion
Ontologies in the smart building domain allow describing a building in a machine-
readable format and enable programmatic exploration of different features of a building.
However, current approaches do not fully describe the data-driven applications (arti-
facts). A standardized metadata representation of such software artifacts complements
the knowledge representation by enabling smart building applications to be configured
easily to a different environment. This study proposes an adaptable workflow with the
help of building graphs, artifact graphs, shape graphs and an RDF service. The proposed
workflow relies on a generic method that can be adapted to data-driven applications in
general. It is worth mentioning that the true benefit of the proposed workflow can be
harnessed if the buildings share the vocabularies such as the Brick ontology, SSN, and
the proposed new ontologies. By definition, an ontology should be an explicit, formal
specification of a shared conceptualization (Gruber, 2008) and the agreement upon these
ontologies is important to make the proposed workflow adaptable.
Future work focuses on implementing and validating the proposed RDF service to sup-
port the MPC and other data-driven applications. The ontologies will also be extended
to integrate KPI ontologies to standardize the performance requirements of algorithms.
Future research will also focus on adding inference and reasoning to building graphs to
also introduce implicit relationships to the graph, before the execution of the proposed
graph validation steps, to enhance querying.

Acknowledgements
This project received funding from the Dutch Ministry of Economic Affairs and Climate
Policy and Ministry of the Interior and Kingdom Relations under the MOOI program.
The authors would like to thank Jan-WillemDubbeldam and Petros Zimianitis from team
TCC, Kropman B.V.

References
Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., Johansen, A., Koh,

J., Ploennigs, J., Agarwal, Y., Bergés, M., Culler, D., Gupta, R. K., Kjærgaard, M. B.,
Srivastava, M., &Whitehouse, K. (2018). Brick: Metadata schema for portable smart

9 CIB W78 conference 2024, Marakesh, Morrocco

Chamari, L. et al. Portable Model Predictive Controller Design

building applications. Applied Energy, 226(September 2017), 1273–1292. https://doi.
org/10.1016/j.apenergy.2018.02.091

Chamari, L., Petrova, E., & Pauwels, P. (2022). A web-based approach to BMS, BIM and
IoT integration: a case study. REHVA 14th HVAC World Congress, 2628–2635. https:
//doi.org/https://doi.org/10.34641/clima.2022.228

Chamari, L., Petrova, E., & Pauwels, P. (2023). An End-to-End Implementation of a Service-
OrientedArchitecture for Data-Driven Smart Buildings. IEEEAccess, (October), 117261–
117281. https://doi.org/10.1109/ACCESS.2023.3325767

Delgoshaei, P., Austin, M. A., & Veronica, D. (2017). Semantic Models and Rule-based
Reasoning for Fault Detection and Diagnostics: Applications in Heating, Ventilat-
ing and Air Conditioning Systems. The Twelfth International Conference on Systems,
(100), 48–53. https://pdfs.semanticscholar.org/b6aa/62285513182e28eef0d5977b524b108397cf.
pdf

Dibowski, H., Vass, J., Holub, O., & Rojicek, J. (2016). Automatic setup of fault detec-
tion algorithms in building and home automation. IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA, 2016-Novem. https://doi.org/
10.1109/ETFA.2016.7733622

Gruber, T. (2008). A translation approach to portable ontology specifications. http : / /
tomgruber.org.

Hammar, K.,Wallin, E. O., Karlberg, P., &Hälleberg, D. (2019). The RealEstateCoreOntol-
ogy. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 11779 LNCS. https://doi .org/10.
1007/978-3-030-30796-7_9

Janowicz, K., Haller, A., Cox, S. J., Le Phuoc, D., & Lefrançois,M. (2019). SOSA:A lightweight
ontology for sensors, observations, samples, and actuators. Journal of Web Seman-
tics, 56, 1–10. https://doi.org/10.1016/j.websem.2018.06.003

Rasmussen, M. H., Lefrançois, M., Schneider, G. F., & Pauwels, P. (2020). BOT: The build-
ing topology ontology of the W3C linked building data group (K. Janowicz, Ed.).
Semantic Web, 12(1), 143–161. https://doi.org/10.3233/SW-200385

Ren, H., Anicic, D., & Runkler, T. A. (2022). Towards SemanticManagement of On-Device
Applications in Industrial IoT.ACMTransactions on Internet Technology, 22(4). https:
//doi.org/10.1145/3510820

Sagar, S., Lefrançois, M., Rebaï, I., Khemaja, M., Garlatti, S., Feki, J., & Médini, L. (2018).
Modeling Smart Sensors on top of SOSA/SSN andWoT TDwith the Semantic Smart
Sensor Network (S3N) modular Ontology. 9th International Semantic Sensor Net-
works Workshop, 1–15. https://hal.archives-ouvertes.fr/hal-01885330/

10 CIB W78 conference 2024, Marakesh, Morrocco

https://doi.org/10.1016/j.apenergy.2018.02.091
https://doi.org/10.1016/j.apenergy.2018.02.091
https://doi.org/https://doi.org/10.34641/clima.2022.228
https://doi.org/https://doi.org/10.34641/clima.2022.228
https://doi.org/10.1109/ACCESS.2023.3325767
https://pdfs.semanticscholar.org/b6aa/62285513182e28eef0d5977b524b108397cf.pdf
https://pdfs.semanticscholar.org/b6aa/62285513182e28eef0d5977b524b108397cf.pdf
https://doi.org/10.1109/ETFA.2016.7733622
https://doi.org/10.1109/ETFA.2016.7733622
http://tomgruber.org.
http://tomgruber.org.
https://doi.org/10.1007/978-3-030-30796-7_9
https://doi.org/10.1007/978-3-030-30796-7_9
https://doi.org/10.1016/j.websem.2018.06.003
https://doi.org/10.3233/SW-200385
https://doi.org/10.1145/3510820
https://doi.org/10.1145/3510820
https://hal.archives-ouvertes.fr/hal-01885330/

	Introduction
	Related Works
	Method
	RDF service for portable data-driven applications
	Semantic descriptions
	RDF Service

	Implementation
	Conclusion

