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Abstract 
Cognitive Digital Twins (CDTs) are well-established for manufacturing but have had very little 
implementation in the buildings sector. This paper presents the development towards one such 
implementation: a CDT for a mixed-use (academic/ residential) building developed from the 
construction BIM. Lessons learned regarding five key elements of CDT development are 
presented: the integrated data model and supporting ontology; building automation system data 
acquisition and streaming; data lake; event detection algorithms; and integration and 
visualization. Insights regarding approach selection, implementation considerations, limitations, 
and alternatives are presented for each to guide the remaining steps (learning, cognition) in the 
CDT development. 
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1 Introduction 
The third industrial revolution introduced computers and manufacturing into the construction 
industry, incorporating computer-aided design (CAD) and manufacturing (CAM) into 
construction. Building Information Modelling (BIM) was introduced late in this period, providing 
new opportunities for collaboration and digitization. Industry 4.0 extends beyond this 
automation to integrate cyber-physical systems and digital technologies (Sawhney, et al., 2020). 
Within the AEC industry, this is manifest through Construction 4.0, which exploits increasing 
digitization to improve project delivery ef�iciency and outcomes (Klinc & Turk, 2019). BIM has 
been recognized as both a central element of Construction 4.0 and a key facilitator in its transition 
(FEIC) along with digital twins (DTs) (Al Faruque, et al., 2021). DT research has increased 
signi�icantly in recent years (Caramia, et al., 2021), evolving from ‘digital shadows’ that are simply 
representations (Sepasgozar, 2021; Fuller, et al., 2020) to responsive Cognitive Digital Twins 
(CDTs) (Al Faruque, et al., 2021; Fuller, et al., 2020) incorporating the ability to “detect complex 
and unpredictable actions and reason about dynamic process optimization strategies to support 
decision-making in building lifecycle management” (Yitmen, et al., 2021). Of the three types of 
cognition that have been explored in the literature – semantic permitting the inference of data 
relationships, perceptual computing to determine the context of the data, and cognitive 
supporting the analysis of large volumes of data to create and test hypotheses (Sheth, 2016) – this 
de�inition focuses primarily on the latter de�inition of cognition.  

While DTs and Cyber-Physical Systems (CPS) are somewhat established, having 
demonstrated their value across multiple sectors such as construction, health care, 
transportation, aviation, education, agriculture, and manufacturing (Garcia & Roo�igari-Esfahan, 
2020), CDTs are newly-emerging. The most signi�icant body of research on CDTs is contextualized 
within the manufacturing sector, for example (Al Faruque, et al., 2021; Zheng, et al., 2022). 
Signi�icant potential applications for CDTs in the AEC community have also been identi�ied, 
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spanning design, construction, and operations & maintenance  phases; these are summarized in 
recent reviews (Ghansah & Lu, 2023; Zheng, et al., 2022).  However, there have been limited �ield 
studies regarding CDT implementation for building operations, many of which are theoretical in 
focus; for example, developing a framework for CDTs (Yitmen, et al., 2021) or analyzing relevant 
processes, opportunities, and challenges (Su, et al., 2023) 

This paper addresses this gap by presenting the lessons learned from the �irst four years of 
CDT development on the Smart Campus Integration Platform (SCIP). SCIP is a six-year research 
project to create an integrated, multi-domain {buildings, infrastructure, transportation systems} 
Cognitive Digital Twin for a university campus. The buildings domain work has focused on the 
pilot development of a CDT for an academic building topped with a residential tower, which 
would be scaled to the full campus. This paper presents the key insights from the �irst half of this 
project, which focused on the development of an integrated data model and supporting ontology, 
data acquisition and streaming from the building automation system (BAS) and integration with 
batch-processed facility management data, the development of a series of algorithms for event 
detection, and the integration of these research streams into the digital twin.  Ongoing research 
is now focused on enabling cognitive computing, developing and supporting operational 
ef�iciency through a suite of supervised, unsupervised, and reinforcement learning algorithms to 
support autonomous learning. By providing an overview of the lessons learned and outcomes of 
this project to date, this paper provides a valuable case study to DT scholars.  

2 Background 
The notion of cognition in computing has been around since Alan Turing and developments in 
machine learning over the latter half of the 20th century developed early natural language 
processing, semantic structures, and early machine learning algorithms. Early cognitive 
computing applications relied on rule-based inferences generated based on expert input, whether 
provided in the form of the written rules or created within the supporting ontology (Eastman, et 
al., 2009). With advances in artificial intelligence, machine learning has evolved substantially, 
evidenced by IBM’s Deep Blue and Watson machines,  extending beyond mere inference to 
prediction and optimization capabilities. The ability for algorithms to learn – whether through 
deep learning, reinforcement, or transfer learning from similar systems – further extends 
computational cognition. 

While no known existing building CDT can claim cognition, there has been signi�icant research 
developed to develop their semantic, cognitive, and perceptual functionalities. This literature 
review summarizes this literature mapped to the six core functionalities identi�ied by Al Faruque 
et al. (2021) that are required for CDT development: perception (data acquisition and 
structuring), attention (of data warranting attention), data storage and visualization, reasoning, 
problem solving, and learning. Together, these functionalities support “computer-driven systems 
(to) monitor physical processes, create a virtual copy of the physical world and make decentralized 
decisions based on self-organization mechanisms” (Smit, et al., 2016).  

2.1 Perception 
Two elements are required for a CDT to correctly perceive data: an appropriate data model and a 
data acquisition system. The latter provides access to the data itself, while the former permits it 
to be appropriately sorted and related to other CDT data.  

An enormous volume of research has focused on data model and ontology development for 
the construction sector, see (Pedral Sampaio, et al., 2022). To enable BIM’s integration of 
geometric, topological, and semantic information, a host of supporting data structures and 
ontologies, most notably Industry Foundation Classes (buildingSMART, 2013), CoBiE (East, 
2007), and their integration with other ontologies through OWL (Pauwels & Terkaj, 2016; 
Rasmussen, et al., 2017). Other ontologies relevant for digital twins are the IoT-focused BRICK 
ontology (Balaji, et al., 2018) and Project Haystack (Project Haystack Corporation, 2014).  

Relational (SQL), unstructured (NoSQL), and graph databases have all been used to populate 
DTs, relating BIM with IoT data. A recent review (Tang, et al., 2019) found that using an API to 
link the BIM (a relational database) with a relational time-series database is the most commonly-
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used approach, but is limited to BIM shared parameters.  Another approach relates BIM and time-
series data using a new schema (Motamedi, et al., 2014), offering �lexibility at the cost of increased 
expertise in implementation (Tang, et al., 2019). Other approaches noted in this review are 
developing new query languages, semantic web technologies such as Resource Description 
Framework (RDF), and semantic web-SQL hybrid approaches using SPARQL (Tang, et al., 2019). 
NoSQL databases have also been used, both in conjunction with semantic web technologies 
(Chevallier, et al., 2020), and linked data approaches (Quinn, et al., 2020); this research continues 
this latter avenue of contribution. Regarding structure, knowledge graphs are seeing increasing 
adoption for DTs, complementing OWL and RDF technologies as the most common current DT 
structure in a recent review (D’Amico, et al., 2022). Graph databases have been noted as one of 
the most promising technologies for DTs (Sacks, et al., 2020) as they are particularly valuable for 
semantic linked-data approaches because of their conceptual clarity (Boje, et al., 2020). Data 
streaming to populate these databases frequently combines buffer and streaming services, for 
example Ka�ka and Spark (Quinn, et al., 2020). This research leverages linked data approaches 
underpinned by the BRICK ontology with graph database data structure. 

2.2 Attention 
Data aggregation can offer significant value in reducing data processing for common queries such 
as daily average or extreme sensor values (Quinn, et al., 2020). More significant to attention, 
however, is outlier detection, which uses unsupervised machine learning to detect anomalous 
events such as faults (Alimohammadi & Chen, 2022). 

2.3 Data Storage and Visualization 
Heterogeneity of data in a CDT requires the use of various data stores. Data lakes provide an 
efficient solution where structured and unstructured data can co-exist. Building data is stored 
separately for each instance and accessed through a common data management system (Quinn, 
et al., 2020). For BIM 3D models storage and delivery, a variety of commercial solutions exist 
today, however there is an increasing interest towards the use of open-source formats for that 
end. glTF (Graphics Language Transmission Format or GL Transmission Format) is a popular 
standard file format for 3D scenes and models. It features the integration of both descriptive 
structured data and binary geometric data to efficiently encode 3D models. Its integration in 
WebGL enabled web browsers facilitates streaming of large 3D models from the data lake and 
visualization platforms (Schilling, et al., 2016). A web-based platform is often preferred for an 
increased compatibility with end-users’ devices, making glTF an efficient format for 3D data 
exchange. 

2.4 Reasoning, Problem Solving, and Learning 
An enormous volume of research has explored cognition. Rule-based expert systems, physics-
based model predictive control, data-driven algorithms (supervised, semi-supervised, 
unsupervised, or using reinforcement learning), and hybrid approaches. 

Rule-based expert systems are a means to capture and code domain expertise, integrating a 
knowledge base with an inference engine incorporating descriptive rules created by a domain 
expert to apply heuristics, forward or backward reasoning and representation rules, and can 
explain system behaviour under uncertainty (Akram et al., 2014). These have been applied to 
building applications such as fault detection (Peña et al., 2016). 

Physics-based models have been widely used to simulate and optimize system behaviour. 
Within the buildings domain, these can be grouped into two types: standalone equipment 
emulators and those incorporating building response. Equipment emulators use equations to 
incorporate thermodynamic, �luid dynamic, and heat transfer mechanisms (Taheri, et al., 2022; 
Mariano-Hernández, et al., 2021) while model predictive control incorporating building 
performance can use resistance-capacitance networks (Dong & Lam, 2014); building energy 
simulation software such as EnergyPlus (Gunay, et al., 2020); or infer unmeasurable elements 
using building data (Gilani, et al., 2019). Optimization can be achieved either numerically, for 
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example, (Carrascal, et al., 2016), but increasingly machine learning is integrated to guide 
optimization, for example  (Ascione, et al., 2016).   

More recently, data-driven methods have come to dominate the literature, allowing 
predictive models to be created rapidly and with reduced effort. This literature is too extensive 
to include here, so the reader is directed to recent literature reviews summarizing such 
developments as they apply to energy optimization (Aliero, et al., 2022) and fault detection 
strategies (Nassif, et al., 2021; Melgaard, et al., 2022).  

3 Cognitive Digital Twin Development 
The CDT was initially created using Autodesk Revit from the as-built set of five design models (2x 
architectural plus structural, mechanical, and electrical). The federated model was enormous, 
containing large amounts of unnecessary detail for CDT operation and requiring significant 
computational resources.  In order to create a simplified model, the two architectural models, 
containing the podium and tower, were imported into a single file and the detailed architectural 
elements were replaced by simplified versions. Rather than importing the structural, electrical, 
and mechanical models, a survey of their content was completed and those elements valuable for 
the planned CDT use cases were identified. The desired use cases, established with input from the 
Facility Engineer, were: HVAC equipment fault detection; HVAC sensor fault and drift detection; 
HVAC system controls optimization to maximize energy efficiency; maintenance of indoor 
comfort conditions; and the detection of events impacting thermal comfort, indoor air quality, 
and energy consumption that could not otherwise be detected from BAS data. To support these 
use cases, data was collected from the BAS (control and measurement points), supplemental BTU 
and electrical submeters, and additional sensors for monitoring branch airflows. Manufacturer 
equipment models for these elements were replaced with simplified HVAC families incorporating 
all semantic and relational parameters and an approximate overall geometry. This permitted a 
lightweight version of the model capable of hosting all relational and semantic data but a size 
reduction of 99% (1GB to 10MB). 

3.1 Ontology and Data Model 
The multi-domain data model was initially created in SQL using a simplified structure to support 
multi-domain data, leveraging the BRICK Ontology to define relationships such as those between 
assets, their measurement and control points, and locations. BIM data (asset locations and 
semantic data, location and asset hierarchies) were exported as schedules, which were readily 
translated into SQL tables to populate the SQL database. However, during CDT development three 
significant limitations of the SQL approach became apparent: the high level of effort to check for 
completeness and accuracy of defined elements; limitations on defining new attributes needed 
for machine learning; and the challenge of defining complex queries. As noted in the literature 
review, graphDBs offer significant value to overcome these gaps.  The visual display of graphDBs 
permits intuitive database checking and exploration (Fig. 1), greatly simplifying quality control. 
Neo4j was used as the graphDB using BRICK relationships because of the various features it 
provides such as being open-source, running with a native graph database and library, and 
supported by one of the largest networks in the area of graph databases.  We note that while 
RDF/OWL would have offered the benefits of integration with the W3C ontology and inference, 
the complexity of queries (a simpler one shown in Fig. 2) to sample the time-series data to support 
use cases made the mapping of this data cumbersome. Further, the inference capability of RDF 
was just as readily provided by Neo4j. Figures, tables and equations. 

Data migration from SQL into Neo4j, was achieved using script-based batches to create nodes 
and relationships in their order of hierarchy in the ontology: {building, levels, rooms, assets, sub-
assets, command points, and measurement points}, which was initially mapped from the BIM as 
described above. Each batch generates a list of Cypher (Neo4j’s query language) commands 
executed on the Neo4j instance in the data lake. It is worth noting that the Neo4j’s community 
version does not support multiple users (administrator access only), and as most of No-SQL 
databases, referential integrity is not managed by the DB engine itself but handled at the business 
logic side. Queries in this new format are much more powerful, permitting highly complex queries 
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with minimal programming, as shown in Figure 2.  Beyond the complex queries facilitated by the 
graphDB, additional bene�its to this project have been the ease of database expansion and 
checking. 

Figure 1. Extract from the GraphDB (Neo4j) Implementation 
 

Figure 2: Sample Complex Query 

3.2 Data Acquisition and Streaming 
The primary CDT data source is the BAS, which was programmed to output a change of value at 
prescribed thresholds. This approach was initially selected to avoid creating traffic on the campus 
critical network. However, it proved problematic from a machine learning perspective since 
variable readings are asynchronous. To address this, pre-processing is introduced to develop 15-
minute interval data suitable for model training. 

Data acquisition was implemented as-follows. First, a sanity check is performed on each 
variable by querying it once a day to ensure the related sensor is online. Second, an aggregation 
process is run hourly and daily to calculate and store key statistics on each sensor (min, max, 
average, standard deviation, records count), furthermore, a shadow table is updated in real-time 
to re�lect the last state of each variable for fast querying. Data can be queried from all these data 
sources depending on the granularity required. For machine learning algorithms that require the 
highest time scale granularity, a window bound time-series data is retrieved from the time series 
database training job, then resampled to the desired time-frame (15 minutes is generally suited 
for most HVAC-based ML algorithms). The temporary dataset is then destroyed at the end of the 
training job. 

Data streaming was initially performed using a custom software provided by the BAS vendor 
as part of their contract, locally buffered, and sent to an ElasticNet database using HTTP packets 
(Quinn, et al., 2020). However, this method proved to have robustness issues, with signi�icant 
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data losses due to new incoming signals from the BAS being ignored during buffering and 
streaming. A revised streaming strategy (Fig. 3) replaced the API with one developed by the 
research team and data stream management, data ingestion, and ETL transformation services 
were implemented in the data lake. The ElasticNet database was also replaced with a time-series 
database, which proved to be much more robust, dramatically reducing the missing data. 
However, it revealed one additional issue with the change-of-value approach: oversubscription. 
When attempting to subscribe to the various devices, several indicated they were oversubscribed 
and could not accommodate an additional signal. Those devices were primarily served by a 
particular network controller. For these devices, the revised streaming strategy queries at 
prescribed time intervals that were determined using data mining on the historical data manually 
extracted from the BAS.  

 
Figure 3: Revised Streaming Approach 

3.3 Data Storage 
A data lake was established to support this work, consisting of the federated data model and a set 
of time-series databases for each dynamic data source, for example cameras, IoT devices, and 
sensor networks. The federated data model was kept as a single multi-domain model to enable 
extra-building relationships, for example the interaction between a building and the broader 
utility grids, or the number of pedestrians entering the building. 

3.4 Developing Cognition: Reasoning and Problem Solving 
This research is currently in-progress and thus this section summarizes the strategies used to 
develop reasoning and problem-solving and summarizes the preliminary results.  

To enable the cognition needed to support the operational use cases, a suite of supervised, 
unsupervised, and reinforcement learning algorithms are being developed, with increasing focus 
on the latter to support autonomous learning. Supervised methods have used LSTM and CNN 
methods to classify data based on its time-series characteristics and relationship with other data 
points and use mismatch between actual and assigned data for event detection; however, these 
were found to be computationally too costly to implement at scale (El Mokhtari & McArthur, 
2021). Supervised methods are also limited in practice due to the paucity of labeled building data. 
To address this, unsupervised methods such as Gaussian Mixture Models, clustering, and 
Bayesian Networks have been explored and show promise in identifying both individual unusual 
equipment measurements and atypical relationships between measurements on a system level, 
indicating a faulty sensor or non-BAS-detectable event. Once identi�ied, these can be reviewed by 
an expert who can then label these cases to support future implementation of semi-supervised 
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learning. By cross-referencing semantic relationships, the context, extent, and severity of such 
events can also be determined and this will be further investigated in future research. 

While rule-based methods have been widely used for reasoning and problem-solving, these 
have not been considered in this research because this would be redundant with the BAS. At 
present, such systems are prescriptive, running the facility and raising alarms based on a set of 
pre-determined rules developed by an expert (the facility design engineer). While the outputs of 
the supervised, semi-supervised, and unsupervised learning may guide the establishment of new 
data-informed rules, this is future research and thus is not discussed here. 

To implement cognition, unsupervised methods have been developed to monitor data 
streaming patterns, automatically detect faults, and apply transfer learning with reinforcement 
learning (Genkin & McArthur, 2024).  

3.5 Digital Twin Integration and Visualization 
The CDT has been implemented on multiple platforms: Autodesk Forge, AWS TwinMaker, Unreal, 
and – for the full campus - Cesium. Of these, Forge is immediately compatible with OpenBIM as it 
can read .ifc files to create the models. For the others, the BIM had to be translated into .gltfs 
(TwinMaker), while Unreal required the use of TwinMotion to translate the .ifc model. To 
implement the CDT in Forge, a simplified FM-BIM was uploaded and a series of APIs were 
developed to support ontology model (knowledge graph) queries to translate user interactions 
into a list of sensors to be queried and import them from the time series database. Figure 4 shows 
a sample view of the result of such a query.  

 
Figure 4: CDT Forge Interface 

 
The Forge interface can be used as-is or integrated into a web browser using React.js or other 

tools to create a custom dashboard to highlight critical parameters to the user. 

4 Conclusions 
The research completed to date has resulted in six insights valuable to guide scholars also seeking 
to create a building CDT from an existing BIM.  

1. They must have the right data: The initial BIM must be complete and accurate with 
respect to the data required by the CDT. The BIM need not contain all the data, for example 
streamed data is much more effectively maintained in a time-series database, but must 
include all elements to which this data will be mapped. The BIM must also be developed 
using an appropriate ontology containing all necessary elements. In this paper, a linked-
data approach was developed to permit the BIM data to be integrated with data from 
other domains (infrastructure and transportation) with a federated data model defined 
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using BRICK relationships and simplified classes. The use of graphDBs is recommended 
for this model to support creation, checking, and complex queries.   

2. Simplicity is key: There is substantial value in simplifying the BIM, particularly 
equipment families, as existing CDT visualization tools are better able to process smaller 
models. At minimum, rooms/spaces and key equipment must be included in a simplified 
model, with sensors defined for each. Elements not required for CDT functionalities may 
also be omitted from this simplified model.  

3. Network Traffic must be managed: Data acquisition and streaming from a BAS requires 
significant care to balance adequate data granularity without unduly increasing BAS 
network traffic. Where possible, push data at a prescribed change of value as its network 
impact is minimal. Subscribing to change of value data is similarly effective, however 
some devices are prone to oversubscription; in such cases, data mining to determine 
appropriate query intervals of no more than 15 minutes to support energy audits and 
building simulation comparisons should be defined.  

4. Pre-process data at the edge: Data pre-processing and the storage of aggregated 
measurements is effective to reduce computational costs for the CDT. These can be stored 
in a separate time-series database within the data lake.  

5. Unsupervised learning supports scaling: To reduce computational cost while 
permitting scaling to other buildings, unsupervised machine learning methods are 
valuable for event detection. Reinforcement and transfer learning have also proven 
valuable in initial explorations for reducing the learning period necessary for such 
models.  

6. Leverage existing tools: There exists a suite of visualization platforms and tools that can 
readily operationalize BIM-based DTs and support their integration with cloud-hosted 
databases. The most appropriate tool will be determined based on model size and 
complexity (Forge proved unstable with very large BIMs while Cesium proved to be more 
efficient in rendering the full campus view), degree of data integration required 
(supported by both TM and Forge with custom programming), and the desired degree of 
realism in the completed model (both TM and Forge have limited rendering capability). 
Video game engines offer significant value to provide a complex, immersive, and open-
source platform for CDT operationalization. 

CDTs offer signi�icant value for the architecture, engineering, construction, and operations 
(AECO) sector as they offer the ability to leverage existing sensor networks and apply AI to 
improve equipment and asset performance. When integrated with machine-to-machine 
communication, CDTs support autonomous or semi-autonomous (human-in-the-loop or human-
on-the-loop) asset operation. Potential applications for CDTs to enable Construction 4.0 include: 
autonomous construction equipment; adaptive building controls; online equipment optimization; 
automatic fault detection and diagnosis for equipment and systems; predictive maintenance; and 
tracking occupant satisfaction and automatically resolving reported issues.  

The primary limitation of this research is that to date it has only been applied to a single 
campus. While it has included multiple campus-level applications including maintenance request 
and occupant complaint mapping and utility monitoring and building-level fault detection, and 
online optimization, there is signi�icant value in applying the approaches discussed herein to 
other applications. Future research will implement the methods shown in residential, 
institutional, and industrial contexts to con�irm the �indings and further re�ine the approach.  
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