
Figure 1. Left: 3D 64 × 64 × 64 patch used for training. Right: ground-truth vs. 
model prediction on a bigger (never seen) 3D patch 
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Abstract 
We propose a deep learning framework to segment and classify a voxel-based representation of 
IFC models. 
 
While BIM-based building element classification has set promising avenues of research, most do 
not take into account the context of elements and they only learn on normalized shaped examples. 
We believe that element representations should be learned by providing neighboring information 
to the network. Some classes such as walls, columns and slabs could be very similar in a 
normalized input as they all can be boxes, but they are different classes that can be discriminated 
against from their surroundings, as a wall bounds spaces while a column only carries loads.  
 
However, there is no idiomatic, standardized, nor universal way to decompose the physical 
building into a set of elements. It depends on preferences of the modeler, functionality of the tool, 
construction method and phase of the development. The later the phase, the more detailed and 
the more akin to how the building will be constructed as opposed to how it conceptually functions. 
Therefore, we present an approach to classify building elements based on a classification of 
individual voxels (cubic elements of mass on a regular grid obtained from the building element 
geometries) within the full building context. That means that the method is independent of 
individual modeler choices on ways of subdivision and can learn even features that are not an 
individual element, such as e.g typically a doorknob. 
 
In this study we put a particular emphasis on the usability of the method in inference for use in 
applications. We argue that the voxelization step completely eliminates modeler choices as it is 
able to utilize the full building context and that a patch-based training approach benefits from 
advances in regularized 2D grid convolutional approaches. 

Keywords: 3D segmentation, 3D deep learning, BIM, IFC, voxels 
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Figure 2. A wall and various elements typically drawn as walls that could also 
be characterized differently, as Beam, Column and Railing 

 

1 Introduction 

1.1.1 Motivation 
Building Information Modelling (BIM) is a relatively new paradigm in construction where 
information is exchanged in information models as opposed to traditional drawings. In such a 
model, the building is decomposed into a set of typed elements with geometric representations 
and various forms of data. The Industry Foundation Classes (IFC) are the predominant open 
standard to exchange such models. 

The IFC schema does not impose a strict coupling between the type of a building element and 
its geometric form or nature or use in the building. Also the textual semantic de initions of 
building elements in the speci ication are relatively vague. As shown in Figure 2, a wall could be 
considered a column if its footprint is relatively short, or a railing if it does not run up to the ceiling 
and intends to prevent injury from falling, or a beam if it’s the part above an opening. 
 As such, IFC models often contain inconsistently classi ied instances. While this problem can 
be rather subtle and still allows visualization and coordination use cases, it prevents automated 
lows to run smoothly by requiring manual corrections and compromises interoperability. To 

name a few examples, building permit evaluation requires consistent and reliable building 
element class labels (Noardo et al 2022) and automated computed aided manufacturing on 
discipline models. 

 

       
 
 
 
 
 To the best of our knowledge there exists no easy nor mainstream automated solution to solve 
this problem as an automated step in a validation process. In addition, we believe that given the 
dif iculty of the task and the availability of data, it is a good candidate for a learning-based 
approach. Therefore, we want to take advantage of deep learning methods to learn how to use 
the information embedded in IFC models to participate in the solution to the problem, towards 
more reliable IFC models. 
 IFC models represent rich datasets, often under-exploited, where information about the 
building functional parts, its elements, and the relationships between each other can be modeled 
or derived. As a data schema, IFC allows to model building elements using the IfcBuildingElement 
abstract class which derives into instantiable classes such as IfcWall, IfcBeam, or IfcWindow. An 
IFC class models attributes and relationships as well as a physical representation of the element 
containing the description of its geometry. Although the IFC schema enables to incorporate 
several classi ication methods into an IFC instance, the IFC class already provides the 
classi ication of a particular instance. 
In the context of Machine Learning and deep learning, this represents a dataset of labeled data 
from which supervised methods can be developed. 

Machine Learning methods and in particular deep learning ones have proven remarkably 
effective for a broad range of tasks (Goodfellow et al 2016). Learning from 3D representations is 
no exception with works such as Choy et al (2016), Qi et al (2017), Zhou & Tuzel (2017) and 
Honocka et al (2019). However, 3D elements can have multiple data representations, which are 
the entry point of deep neural networks. When designing such a network, one needs to choose 
the appropriate representation given its problem. The volumetric representation is particularly 
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Figure 3. various realizations of the same wall configuration, resulting in 
different geometric forms and/or different topology 

interesting in the context of a building segmentation task, as it provides information about 
connectivity and ful illment of a discretized space. 

 
There is a high variability in ‘idioms’ of IFC usage based on – among others – the following 

factors:  authoring tool and version; modeler choices; level of development, phase and intended 
use of the model; type of construction project (steel or concrete, residential or commercial, etc.), 
as shown in Figure 3. This has massive implications on the model as exchanged as a graph and 
mesh (decomposition versus singular representations, tremendous detail in geometric features 
that add detail such as illets and chamfers) but are all in the end just ways of representing the 
same physical structure. The application of voxelization in this case is so interesting because it is 
agnostic to the amount of decomposition, modeler choices on where to break up elements as well 
as geometric detail. 

 

       
 
 
 

 Voxel grids are one of the most rudimentary geometric forms to encode information. It can be 
derived from Boundary Representation (BRep), triangle meshes as well as point clouds. This 
means our approach can be used on projects with heterogeneous data or acquisition methods 
such as scan to BIM. 
 

1.1.2 Related work 
 
Krijnen & Tamke (2015) introduced element classi ication and anomaly detection by means of 
derived geometric quantities as an input signal using a simplistic neural network. This was later 
enhanced in Koo et al (2017) using Support Vector Machines, but still suffers from the same 
pitfalls that the geometric features the model operate on (surface area, volume, gyradius, etc.) are 
rather simplistic, not very descriptive of the element and susceptible to the different outcomes 
under different ‘idioms’ or level of development. 
 In Collins et al (2021), a graph representation of individual building elements is used for a 
classi ication task. It uses a graph neural network and obtains promising scores on classi ication 
of single elements.  
Another example of deep learning applied to BIM models is Lomio et al (2018) where the method 
consists in classifying a building from screenshots of different angles using a pretrained ResNet 
(He et al 2015). 
IFCNet (Emunds et al 2021) provides a valuable contribution by presenting a dataset of IFC 
elements extracted from IFC models and reviewed by domain experts. Providing such a 
benchmark constitutes an important step in the classi ication of BIM elements. The authors 
acknowledge the limitations of their contribution, especially the loss of information occurring 
when normalizing the elements. 
In Emunds et al (2022), the authors use a point cloud representation of elements obtained from 
sampling points from a mesh representation. They present a tentative framework for the 
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integration of a neural network in a tool, and work from the learned representation for elements 
classi ication and retrieval tasks. 
Luo et al (2023), follows-up on IFCNet, with an augmented IFCNet dataset called IFCNet++, which 
also includes IFC relationships as a feature vector concatenated to the embeddings of an element 
obtained from its multi-view representation. 
Although the cited contributions offer promising opportunities for solving the misclassi ication 
problem, using different input signal representations, they only learn based on isolated elements. 
While they achieved excellent results on classi ication tasks, we believe such methods would lack 
robustness when presented with ambiguous cases. Moreover, the networks presented would 
only learn based on the intrinsic geometric properties of a class and its visual appearance, 
whereas a building element is also de ined and distinguishable by its function within the building. 
This kind of learning makes the system very dependent on the dataset, as it will learn only from 
the shapes present in it.  
Luo et al (2023) started to incorporate relationships information in their input data, which gives 
information about the number of connections an element has but does not provide information 
about how several instances can be related. In addition, the future interest stated in several of 
those works is to integrate the semantics of the IFC into the learning process, which limits the 
method to CAD generated models. 
 

1.1.3 Contribution 
In this paper, we wish to present a method for learning an ef icient representation of building 
elements in their context for a segmentation task. The goal is to extract a volumetric 
representation of a part of a building model (patch) and feed it to a neural network whose output 
will be a 3D grid where each voxel would be assigned an IFC class among a set of prede ined 
classes. On a practical level, this method gives the possibility to semantically check or enrich IFC 
models. From a research perspective point of view, we prove that it is possible to learn from 
occupancy grids, meaning that a volumetric representation offers a powerful starting 
representation for building elements. Our contributions are the following: 

- Provide a method to voxelize IFC models and produce a segmented volumetric 
representation of building elements 

- Train a neural network to segment a voxel grid derived from IFC elements 
- Use the trained neural network in inference on unseen data 
 
The starting representation for learning (3D patch) as well as an example of our trained model 

prediction on a large patch with its associated ground-truth are presented in Figure 1. 

2 Method 

2.1 Voxelization 

2.1.1 Voxelization algorithm 
A voxel grid is a 3D volumetric grid where regular discretized elements of mass as a ield of values. 
In our research we start from the IFC geometry to irst build a binary grid of zeros and ones for 
the respective building element classes under investigation. These are composed into a labelled 
occupancy grid where every voxel value corresponds to a single building element class. There is 
a global priority - roughly in line with the prevalence and expected physical dimensions of 
elements - that governs the inal assignment of a cell in case of multiple classes occupying the 
same cell, which is fairly common due to the fact that a box-overlap algorithm is used for 
voxelizing the geometry. 
 
We voxelize entire IFC models and retain speci ic classes. This provides us occupancy grids where 
each voxel has a class assigned. We obtain this discrete representation by using a voxelizer 
algorithm. 
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Figure 4. Wireframe view of the open-source IFC models used for training and testing 

2.2 Representation choice for learning 

2.2.1 Volumetric representation 

The representation has a huge impact on the model performance and on solving the targeted task. 
We believe that a volumetric representation in the form of occupancy grids provides the bene its 
of connectivity as well as a clear visualization of classes. Even though it is computationally 
intensive (Zhou & Tuzel 2017), it keeps the essence of how building elements look like relative to 
each other: how they connect, how they are placed in the model, and how much relative space 
they take. In addition, it enables to extract the patches at speci ic locations giving lexibility on the 
examples that can be shown to the network. 
 

2.2.2 Patch extraction and data augmentation 
To train the model, we provide 64 × 64 × 64 3D patches extracted from the voxelized IFC iles. 
The patching strategy enables to reduce the computational cost of training but also serves as a 
data augmentation step, because we can provide those patches “on- ly” during training. We keep 
for each voxelized building element its bounding box center and extract patches from this 
coordinate, at the desired patch size. We empirically found that 64 × 64 × 64 was a convenient 
size to balance between computational cost and providing enough contextualization, that is 
enough different classes instances belonging to the patch. We also randomly apply 
transformations on the extracted patches such as lips or rotations. 
 

2.2.3 Network architecture 
We use a fully convolutional 3D UNet (Çiçek et al 2016)1. This network architecture can ingest 
patches of different sizes (typically multiple of 16), which provides lexibility for both the training 
and inference stages. Indeed, we can train on 64 × 64 × 64 patches but infer on bigger or smaller 
patches depending on the use case. The 3D UNet is an extension of the well-known UNet 
(Ronneberger et al 2015) which has encountered many successes for image segmentation and 
more recently in generative tasks with diffusion models. The UNet is made of an encoder and 
decoder part, to which skip connections are added between high level features and lower-level 
ones to preserve details. 
 

2.2.4 Training details 
We trained the model for 47 epochs, with patches extracted from the 8 voxelized IFC iles with 
batch size of 8 and the Adam Optimizer. We use the Cross-entropy loss as the cost function. 

2.2.5 Dataset 
The model has been trained on 8 publicly available models (Figure 4). Evaluation happens on 2 
models not seen during training. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 Implementation taken from: 3D-UNet-pytorch. [Online]. Available from: https://github.com/hanskrupakar/3D-UNet-pytorch. 
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Table 1. Open-source IFC models used for training and testing with no. of occurrences per IFC class 

filename Ifc
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train          
office_model_CV2_fordesign.ifc 8 33 0 8 9 10 0 0 0 

https://openifcmodel.cs.auckland.ac.nz/api/download/20160414office_model_CV2_fordesign.ifc  

Architecture.ifc 24 1578 0 131 435 349 89 0 201 

https://openifcmodel.cs.auckland.ac.nz/api/download/20210219Architecture.ifc 

Wellness center Sama.ifc 13 69 0 2 54 3 11 9 48 

https://openifcmodel.cs.auckland.ac.nz/api/download/2022020320211122Wellness%20center%20Sama.ifc 

KT-ZCB (combined).ifc 279 549 552 233 97 146 55 25 1 

https://openifcmodel.cs.auckland.ac.nz/api/download/20220221KT-ZCB%20(combined).ifc 

DigitalHub_FM-ARC_v2.ifc 23 178 14 47 64 62 13 10 0 

https://github.com/RWTH-E3D/DigitalHub/blob/36565d529b4dadeca625de2b793d7e16700171e9/Version_2/DigitalHub_FM-ARC_v2.ifc 

Duplex_A_20110907_optimized.ifc 21 57 8 24 14 0 4 2 61 

https://www.wbdg.org/bim/cobie/common-bim-files 

IFC Schependomlaan.ifc 279 930 174 259 205 23 90 0 0 
https://github.com/buildingSMART/Sample-Test-
Files/blob/3c73e7a664cc47e4129affb079bd4c656d29a98e/IFC%202x3/Schependomlaan/Design%20model%20IFC/IFC%20Schependomlaan.ifc 

rac_basic_sample_project.ifc 35 47 0 17 16 3 10 3 35 

https://help.autodesk.com/view/RVT/2025/ENU/?guid=GUID-61EF2F22-3A1F-4317-B925-1E85F138BE88 

total 682 3441 748 721 894 596 272 49 346 
test          
Molio_with_URIs.ifc 37 98 7 119 119 14 2066 564 38 

https://github.com/buildingSMART/Sample-Test-Files/blob/d3ae2f11ed48a2e87b5dbcc6db14dbf197249153/IFC%202x3/Molio/Molio_with_URIs.ifc 

AC20-FZK-Haus.ifc 4 13 4 11 5 0 2 0 0 

https://www.ifcwiki.org/index.php?title=File:AC20-FZK-Haus.ifc 

total 41 111 11 130 124 14 2068 564 38 
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Figure 5. Window frame patch. Left: ground-truth. Right: model prediction. Left: error plot. 

Figure 6. ‘Podium staircase' patch. Left: ground-truth. Right: model prediction. Left: error plot. 

3 Evaluation 

To evaluate the performance of our method, we irst proceed with a manual inspection of 
evaluating the trained network on patches from unseen IFC models. This highlights the kind of 
knowledge encapsulated in the network. Note that the examples highlighted in Figures 5, 6 and 7 
were noteworthy with discrepancies between predicted and the original labels. These are not 
representative for the overall performance of the network. 

Moreover, we apply the model on speci ic elements, by means of taking the patch at element 
center and taking the predominant predication for the component of voxels. This results in an 
element-wise confusion matrix useful for comparing our outcomes to the state of the art. 

Finally, we use a sliding window over the full domain of unseen IFC models to gather overall 
statistics on performance and confusion. In the view of the authors this is least useful, because it 
blindly aggregates over useful observations of the model as well as predication errors. We should 
also note that we do not have a curated ground truth as IFC models are so diverse. Also, on an 
individual voxel basis, a window frame is thin, but the surrounding wall is much thicker, so a 
wider decision boundary in favor of the window results in quite low IoU scores, particularly 
because a small radius of wall inclusion results in a large number of false window positives, 
regardless of the discussion whether the model is correct and that there maybe is a missing 
windowsill. 

3.1 Results
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Figure 6. ‘Podium staircase' patch. Left: ground-truth. Right: model prediction. Left: error plot 

Figure 7. Stair/Slab connection patch. Left: ground-truth. Right: model prediction. Left: error plot. 

 
 
 
 

 
Table 2. Element-based confusion matrix Molio 

  Slab Wall Beam Window Door Column Railing Stair Furn 
IfcSlab 37 0 0 0 0 0 0 0 0 
IfcWall 0 98 0 0 0 0 0 0 0 
IfcBeam 0 0 7 0 0 0 0 0 0 
IfcWindow 0 2 0 106 11 0 0 0 0 
IfcDoor 0 0 0 0 119 0 0 0 0 
IfcColumn 0 11 0 0 0 3 0 0 0 
IfcRailing 0 0 0 0 0 0 2066 0 0 
IfcStairFlight 5 6 0 0 0 0 0 553 0 
IfcFurnishingElement 3 25 1 0 0 0 0 0 9 

 
Table 3. Element-based confusion matrix FZK Haus 

  Slab Wall Beam Window Door Column Railing Stair Furn 
IfcSlab 2 0 0 1 0  0 1   
IfcWall 0 13 0 0 0  0 0   
IfcBeam 0 3 0 1 0  0 0   
IfcWindow 0 0 0 11 0  0 0   
IfcDoor 0 0 0 0 5  0 0   
IfcColumn           
IfcRailing 0 0 0 0 0  2 0   
IfcStairFlight 0 0 0 0 0  0 0   
IfcFurnishingElement                 
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Table 4. Per-voxel accuracy confusion matrix Molio 

 Slab Wall Beam Window Door Column Railing Stair Furn 
Slab 0,6092 0,0156 0,0020 0,1598 0,0000 0,0000 0,0000 0,2134 0,0000 
Wall 0,0109 0,9566 0,0050 0,0122 0,0024 0,0001 0,0001 0,0128 0,0000 
Beam 0,0532 0,5652 0,0051 0,0102 0,0000 0,0000 0,0000 0,3664 0,0000 
Window 0,0000 0,0458 0,0000 0,9541 0,0001 0,0000 0,0000 0,0000 0,0000 
Door 0,0073 0,0710 0,0033 0,0624 0,8560 0,0000 0,0000 0,0000 0,0000 
Column 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 
Railing 0,0127 0,0005 0,0000 0,0000 0,0000 0,0000 0,9868 0,0000 0,0000 
Stair 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 
Furn 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 

 

3.2 Discussion 
From the confusion matrices (Tables 2, 3, 4), we observe that the network has learned a useful 
representation of building elements from different IFC models, except for some 
underrepresented or high intra-class variance classes. We do not report on Intersection over 
Union scores as they could be fairly low for those classes, to some extent inherent to inconsistent 
modeling. We observe for example for the windows that the model can predict frames to be larger, 
and also with the windowsill as part of the wall (Figure 5). In Figure 6, the podium staircaise is 
wrongly segmented as a wall. In Figure 7, we see that the model can confuse stairs landing as part 
of the slab. This is exempli ied in element counts on Molio model. The high number of railings and 
stair lights comes from the fact that every bar and riser is modelled individually. 
This demonstrates the ability of the approach to consider the context as it is - not surprisingly - 
very successful to assign the dominant class in these cases. 
 

4 Conclusion and future work 
We presented a method to learn from a voxelized representation of building elements belonging 
to open-source IFC iles. We managed to obtain interesting insights about how the network learns 
and predicts classes when presented a voxel grid of zeros and ones.  
We believe that learning a more granular decomposition of building elements (door 
knobs/drangers) with instance segmentation could be of interest to go further into the 
semantic/geometric enrichment of IFC models. This is related to the next step we would like to 
study, that is assessing the ideal voxel size and patch size. 
Also we would ind it relevant to consider something like material characteristics so that elements 
can be delineated by non-homogeneous materials. Currently it's impossible to learn something 
about coverings or an air gap. Finally, different tasks (e.g anonomaly detection on geometry) 
could be explored based on our trained model.  
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