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Abstract 
The continuous streaming of data from a sensor network is essential for a digital twin to mirror 
its physical counterpart in real-time. Missing or interrupted data limits the digital twin 
functionalities, but can be difficult to detect when data is communicated at a change of value. 
Such disruptions in data streaming can compromise facility management data uses and lead to 
overlooked critical alerts. By understanding the unique streaming patterns of each controller, 
these models are less susceptible to errors, reducing the incidence of false alarms, ensuring 
more accurate streaming, and notifying users immediately about any significant deviations from 
the expected data counts. This paper presents the development of such an approach 
implemented on a Building Automation System for a large multi-use building, which consists of 
over 14,000 points for the HVAC systems that report whenever a change of value above a 
defined threshold is observed. Data is collected from thousands of sensors and gathered by 
controllers wired to the building’s private network. Before transmission to cloud services, 
streaming software structures the records with appropriate formatting. This data is then 
archived in a time-series database for subsequent analysis. The streaming quality model 
functions in a two-tiered approach. Initially, an appropriate model is determined for each 
controller. This is accomplished by fitting the count distribution with known statistical 
distributions, such as the Poisson or Normal distribution. Algorithms like Expectation-
Maximization determine the parameters of these distributions. In the subsequent phase, the 
calibrated models operate in the cloud, assessing on an hourly basis whether the count aligns 
with the expected range. If deviations exceed a set threshold, an alert is triggered. This paper 
presents the development of this approach with a formal use case definition, process map, and 
information exchange to support its replication using OpenBIM approaches. 
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1 Introduction 
The concepts of ‘Smart Buildings’ and ‘Digital Twins’ are increasingly gaining adoption, 
particularly insofar as they are able to support energy management, decarbonization, and 
improved facility management practices. In this paper, a ‘Smart Building’ is defined as a building 
where sensor data from across multiple systems can be collected and integrated into a common 
data environment, while ‘Digital Twin’ refers to a virtual version of an asset capable of acquiring 
data in near-real-time, storing it, using the data to analyze or optimize the real-world asset 
performance, and send instructions back to the asset (or a human intermediary) to implement 
changes. Together, these allow building data to be collected, streamed, and analyzed within the 
virtual space, where controls optimization and fault detection can occur. Several studies have 
explored the potential, implementation, and challenges of such “Smart Building Digital Twins” 
(SBDT), see (Deng, et al., 2021; Ghansah, 2024).  
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Despite the significant potential of SBDTs, data acquisition can pose a significant challenge. 
First, such data is complex and heterogeneous, often acquired from a diversity of siloed systems 
and – in the case of older buildings -  drawing from legacy, proprietary systems. Second, the data 
streams must be robust as missing data can lead to significant events being missed as well as 
limitations on the accuracy and functionality of the data analytics. While in some cases, data is 
streamed at predefined intervals, in many cases, a change-of-value (CoV) approach – where data 
is streamed whenever a reading deviates from the previous one by a threshold amount – can be 
more helpful to capture system dynamics. In such cases, it can be extremely difficult to 
determine when data streams are interrupted, resulting in missing data. This paper addresses 
this latter challenge, presenting a stochastic approach to develop an online data streaming 
quality algorithm capable of learning normal data streaming patterns from building automation 
system (BAS) devices so that any interruptions can be quickly identified and resolved. 

This paper presents the data streaming quality algorithm development and a case study 
implementing it in a mixed-use (academic lab/classroom and residence) building. To maximize 
the value of  this contribution, its implementation is contextualized using process maps and 
information exchanges consistent with the BuildingSMART Information Delivery Manual (IDM).  

2 Literature review 
A significant body of research exists on data streaming and its quality monitoring. This section 
begins with an overview of the most common building automation protocols and how these are 
mapped to OpenBIM concepts to support integration with BIM-based SBDTs. Second, the state-
of-the-art regarding data quality streaming research is presented to contextualize this paper’s 
contribution. 

2.1 Building Automation, Data Streaming, and OpenBIM Integration Protocols 
Data integration protocols arose alongside direct digital controllers in the 1980s to enable data 
exchanges between these controllers, sensors, and controlled equipment. Within the 
commercial buildings domain, three significant data streaming protocols have been adopted: 
LONWorks, MODBUS, and BACnet (ASHRAE, 2001). Of these, BACnet is the most widely used for 
HVAC system controls and integration, and is governed by ISO 16484-5. It is a client-server 
protocol allowing bidirectional communication between any devices within a Building 
Automation System network.  MODBUS is an older serial protocol using a master-slave system 
and while highly efficient for simple data communication between PLCs, it is unable to handle 
complex data and is rarely found in new commercial buildings. Of the three protocols, 
LONWorks is the most proprietary protocol, though it uses an open standard. It is primarily 
used for specialized applications, rather than more broadly across buildings, though with its 
recent integration with Amazon’s Alexa, Google Home, and other home integration systems it is 
beginning to see adoption in Smart Homes (Chinchero, et al., 2020).  Other Smart Home 
integration protocols are BUSing and KNX, which may be interconnected for broader 
interoperability. Each of these protocols communicates with either MSTP or IP and can be 
streamed using either proprietary edge IoT devices or using open protocols, including I4.0 and 
AWS Greengrass.  

The ubiquity of ‘smart’ devices within buildings has increased both the availability and 
usability of this data, however to map these into OpenBIM, the IfcBuildingControlsDomain  is 
critical, notably the IfcPerformanceHistory property sets. At a high level, the 
IfcBuildingControlsDomain schema is an extension of the IfcSharedBldgServicesElements schema, 
supporting various controls types such as alarms, instrumentation (sensors, flow instruments), 
control (controllers, valves and dampers, actuators) and building automation as a concept  
(BuildingSMART, 2024a). Each of the devices may be assigned an IfcPerformanceHistory, which 
may be used with or without design data, and which uses the IfcRelAssociatesClassification to 
map the network addresses of the relevant device or data point (BuildingSMART, 2024b). The 
IfcBuildingControlsDomain is building automation protocol agnostic  but may be mapped to 
these systems. Key concept templates that can be assigned to IfcPerformanceHistory are 
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classification, aggregation, and control to support the full range of functionality to stream 
building automation data into OpenBIM. 

 

2.2 Monitoring Data Streaming Quality 
Several studies have noted the criticality of reliable sensor data to support data-driven 
predictive models, for example (Lillstrang, et al., 2022; Bamgboye, et al., 2019; Ghansah, 2024). 
In a study of two case studies, Lillstrang et al (2022) found significant periodicity, low 
heterogeneity of patterns, and significant missing data on the order of 11.3-33.7%. They also 
found significant differences in sampling rates by sensor type and location were also found and 
they cautioned that overlooking the periodicity and heterogeneity of data could lead to false 
impressions of accuracy when only homogeneous conditions are predicted (Lillstrang, et al., 
2022). This demonstrates the importance of considering sampling rates and their periodicity to 
avoid overestimating the accuracy of the model. The lack of consistent data collection and the 
complexity and uncertainty of data remain two of the most significant challenges in the creation 
of Digital Twins (Ghansah, 2024). 

To overcome missing sensor data, many scholars impute values, however, this is insufficient 
for large bursts of missing data (Bolchini, et al., 2017). Other scholars have sought to analyze the 
consistency of streamed data. One study (Bamgboye, et al., 2019) applied semantic modeling 
and reasoning using a sliding window technique to analyze data stream temporal characteristics 
and explored the effects of different data serializations finding that RDF/XML outperformed 
NTriple, Turtles, and N3 from a latency perspective. While this study was able to validate data 
consistency, it was not designed to detect missing data; this latter element remains a significant 
gap in the literature and one addressed in this paper. 

3 Methodology 
A mixed-use building consisting of a 16,300m2 (175,000sf) building is used as a case study for 
this research and consists of an academic podium (lab & academic offices) with 19-storey 
residence tower housing 332 student rooms in 2- and 4-bedroom apartments. Developed by the 
university to be a ‘living lab’, the building is controlled by a typical BAS and enhanced with 
numerous supplementary measurement points for both hydronic (hot & chilled water) and air 
flows throughout the academic podium and on selected residence floors. A total of 
approximately 14,000 data points are thus streamed, each pushed to the IoT device using a CoV 
strategy with an additional point reported at midnight. 

The aim of this work is to model and analyze the streaming rate of data from this case study 
building, which is. In this approach, updates are sent only when the value of the data point 
changes beyond a predefined threshold, to minimize the additional network traffic and storage 
requirements by avoiding the continuous streaming of redundant or unchanged data. This 
results in a highly variable volume of available data over the course of a day. This paper 
presents the development of a predictive model to capture the data streaming patterns. When 
the actual data rate deviates significantly from the predicted model, an alert would be triggered 
to indicate the anomaly. The overall methodology used is as follows: 

1. Gather data from AWS Timestream: Data will be gathered every hour for all devices 
(NAE-01), noting the timestamped counts. This data will be stored offline in CSV files for 
analysis. 

2. Estimate the value of the parameter λ for a Poisson distribution or (μ, σ) for a Normal 
distribution, by counting the records received during a time interval Δt = 1 hour. This 
interval can be adjusted for a quicker response from the alert system. 

3. With the estimated λ and (μ, σ), calculate the likelihood of a new hourly recorded count.  
4. Build an anomaly detection algorithm that identifies when the likelihood of the count 

falls below a certain threshold. If we have various values of the parameter λ that depend 
on the time window (e.g., summer, weekend), then different models should be used, 
each tailored to its specific case with a different λ. 
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It is important to note that to ensure that at least one value is recorded per day, there is a daily 
forced reporting of all data points at midnight. 

This research is presented following the Building Smart International UCM framework to 
permit its reproducibility using OpenBIM approaches. However, it should be noted that the 
initial research was developed to run using a gltfs extracted from an FM-enabled BIM and 
connected to a data lake with both relational and time-series databases, rather than mapping 
the data into a BIM using the IFC protocols discussed previously. 

3.1 Data Acquisition and Information Exchange 
The building contains many network control (NCE) and automation (NAE) engines, which 
manage the network traffic from field controllers, which in turn communicate with sensors 
using the BACnet Protocol. These devices are typically denoted as NAE-XX or NCE-XX depending 
on their type, where XX is a sequential number. The sensors are attached to a range of assets 
that are connected to the devices. For instance, device NAE-01 collects data from all HVAC 
assets on the first and second floors, like FCU-1-1 and FCU-2-6. When a sensor within an asset 
captures a measurement, the device sends this data to the streaming software upon receipt. 

Following the Building Smart International UCM framework, the functional and technical 
requirements are summarized briefly herein, starting with an identification of the functional 
parts, using the Information Delivery Manual (IDM) process map, exchange requirement, and 
functional part definitions as follows. 

The overall process begins with the reporting of a change of value from a building sensor, 
which is communicated to the streaming device, which writes it to the time-series database in 
the database and adding it to the performance history (IfcPerformanceHistory) of the associated 
element as defined in IfcRelAssociatesClassification. On a scheduled basis, the predictive model is 
run, which checks for any errors or gaps in the data received since the last check; if an error is 
detected, this is reported as an alarm both flagged in the Digital Twin and – if significant – 
reported to the facility management team who can investigate the reason for this loss. If there is 
no error detected in the batch, the process is terminated until the next scheduled time. This 
process is summarized in Fig 1.  

Figure 1. Process Map for Data Streaming Quality Monitoring 

 
To support this process, five data exchanges are required. First, the BAS sensor must report 

a change of value; this is sent by the edge device to the data lake using the chosen protocol (e.g. 
BACnet accessed via Greengrass). Within the data lake, this is then appended to the time-series 
database. From the time-series database, a data exchange is required to add this datapoint to 
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the IfcPerformanceHistory of the relevant element, using the IfcRelAssociatesClassification to 
match the BIM element with the network address of the sensor. Additional data exchanges are 
much simpler, consisting of the database query to run the predictive model and the reporting of 
alarms through both the Digital Twin and Facility Management system interfaces. 

While the majority of required parts and concepts already exist, this paper focuses on the 
creation and use of the streaming data predictive model to detect anomalous patterns and 
missing data. 

3.2 Streaming Data Model 
The exact count of records that we receive from a device isn't precisely known and is treated as 
a random variable. Our analysis strategy revolves around first determining the count of records 
received from each device in a specific time interval, denoted as Δt (1 hour in this study). We 
then calculate the likelihood of this count given our predictive model. If the likelihood falls 
below a predefined threshold, an alert is triggered. 

In theory, we can model the generation of a measurement as a random variable following a 
Bernoulli distribution, and thus the count of measurements in a time window Δt follows a 
Poisson distribution with parameter λ (Eq. 1), where λ is the average count of records within 
the time interval Δt. 

                              P(X = k | λ) = e−λ⋅λk

k!
  ( 1 ) 

We assume that the parameter λ varies across devices and can even fluctuate within different 
time windows for the same device. For example, during the weekends, the change dynamics 
could be slower, possibly leading to fewer CoV events and consequently, lesser data 
transmission. We verify if this hypothesis holds true. For higher values of λ, the Poisson 
distribution can be approximated with a Normal distribution with both mean and variance 
equal to λ:  𝒩𝒩�λ,  √λ�.  
A second hypothesis proposes fitting the streaming data distribution to a normal distribution, 
𝒩𝒩(μ,  σ2) (Eq. 2). 

𝒩𝒩(𝑋𝑋 = 𝑥𝑥|μ,σ2) = 1
√2πσ2

𝑒𝑒−
(𝑥𝑥−μ)2

2σ2                                              ( 2 ) 

4 Results 
Prior to modeling the data distributions, preliminary data analysis was conducted to 
understand the frequency of CoV reporting across the building. While each network device 
(NAE or NCE) had a similar capacity for reporting data points, these varied significantly by 
device based on the connected equipment. Figure 2 presents the estimated mean of records 
transmitted hourly for each device (excluding midnight reset). A considerable disparity 
between devices is observed and explained by the number of controllers connected to each 
device and the nature of the controlled HVAC equipment or sensor points. NAE-01 controls two 
floors (Levels 1 and 2), which explains the high number of recorded hourly counts. Meanwhile, 
NCE-09 and NCE-28, which serve the main mechanical rooms, also show relatively high activity. 

 

 
Figure 2. Hourly streaming mean record count per device (excluding the midnight reset). 
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Visualizing these counts on an hourly basis, provides significant additional information, as 
shown in Figure 3. The mean value at midnight differs from the mean values observed at other 
hours. This disparity is attributed to the fact that at midnight, all sensors in a device are queried 
simultaneously, resulting in a higher rate of data. Modes close to zero are omitted ; they 
typically occur due to streaming interruptions. The histograms show that most of the devices 
exhibit a single mode with sometimes a relatively skewed distribution and a mean value 
remaining consistent throughout the entire period. However, there are exceptions where two 
modes are present such as for NAE-01, NCE-20, NCE-L1, NCE-10, NAE-05, NAE-03.  

 

 
Figure 3. Streaming histogram in normal hours and midnight (streaming reset) for selected devices 

4.1 Distribution fitting 
The Expectation-Maximization (E-M) algorithm was used to fit distributions, along with the 
Kolmogorov–Smirnov normality test for normal distributions. Figure 4 shows examples of real 
distributions, excluding midnight data, compared to Poisson and a distribution with a standard 
deviation 𝜎𝜎 = 10√𝜆𝜆 where λ is the estimated mean. This value of σ is observed to be a good fit 
for many devices. But in the analysis, the standard deviation σ associated with each device is 
estimated using the E-M algorithm. The fitting result is shown in Table 1. 
 

Figure 4. Distribution Fitting for selected devices fitting to a Poisson or Normal distribution (Row 1) or skewed or 
bi-modal distribution (Row 2). References for Poisson and Normal distributions are also shown. 



McArthur and El Mokhtari. 2024 Streaming Quality Detection Algorithm 

Proc. of the CIB W78 Conference 2024, October 1st-3rd 2024, Marrakesh, Morocco 

Table 1. Distribution Summary – First round 

Poisson Normal Skewed Bi-modal 
NCE-03 NAE-01 NAE-03 NAE-05 

 NAE-04 NCE-14 NAE-07 
NAE-06 NCE-16 NCE-08 
NCE-09 NCE-18 NCE-10 
NCE-26 NCE-20 NCE-12 
NCE-28 NCE-21 NCE-13 
NCE-L2 NCE-22 NCE-27 

 NCE-24 NCE-L1 

4.1.1 Skewed distributions 
To address the skewness problem observed for many devices, the logarithms of hourly record 
counts are fitted to a normal distribution, thereby creating a log-normal distribution. The new 
classification results after fitting are shown in Figure 5 and Table 2. 

 

 

 
Figure 5. Applying a Logarithmic Transformation to Skewed Distributions. The top two rows represent the 

original distributions, and the bottom two rows represent the log-transformed distributions. 

Table 2. Distribution Summary – Final results  

Poisson Normal Skewed Bi-modal Log Normal 
NCE-03 NAE-01 NCE-14 NCE-08 NCE-20 

 

NAE-04 NAE-03 NCE-L1 NCE-21 
NAE-06 NCE-24 NCE-13  
NCE-09 NCE-18 NCE-27 
NCE-26 NCE-22 NAE-07 
NCE-28 NCE-16 NCE-10 
NCE-L2  NAE-05 

 NCE-12 
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4.1.2 Remaining skewed and bi-modal distributions 
A bimodal or skewed distribution indicates the presence of different data streaming patterns 
that cannot be effectively modeled by treating all hours equally. There are several approaches to 
address this. One method is to create clusters of days based on criteria such as working days, 
holidays, weekends, or seasons, like the cooling and heating seasons. Alternatively, each hour of 
the day could be modeled as an independent distribution, resulting in 24 distinct distributions 
for the same device. This process was replicated for the remaining devices. For each hour, a test 
of normality is conducted to determine which hours conform to a normal distribution. 
Subsequently, the Expectation-Maximization (EM) algorithm is employed to identify the optimal 
fit for the normal distribution. Finally, logarithmic transformations are applied to address 
skewness in hourly distributions. The final classification is shown on Table 3. 
 

 
Figure 6. Hourly Record Count Distribution for NCE-08: Both Real and Predicted Distributions After Test of 

Normality and E-M Algorithm Application for Each Hour of the Day – Only even hours are shown. 

Table 3. Distribution Summary – Third round 

Poisson Normal Log Normal Hourly 
Normal 

Hourly Log 
Normal Bi-modal 

NCE-03 NAE-01 NCE-20 NAE-03 NCE-12 NAE-05 
 NAE-04 NCE-21 NAE-07 NCE-14 NCE-10 

NAE-06  NCE-08 NCE-16 NCE-13 
NCE-09 NCE-27 NCE-18 NCE-L1 
NCE-26  NCE-22  
NCE-28 NCE-24 
NCE-L2  

 
The remaining bi-modal distributions require further modeling that may consider factors such 
as occupancy or seasonal changes. 

4.2 Anomaly detection process 
For devices that follow either a Poisson or a Normal distribution (with or without the 
logarithmic transformation), an anomaly detection algorithm can be implemented using the 
negative log likelihood of the observed hourly record count. A predefined threshold is used to 
generate alerts when the negative log likelihood exceeds that threshold. In the case of a Normal 
distribution, the threshold is set to  𝑇𝑇ℎ𝑁𝑁 = −𝐿𝐿(𝜇𝜇 −  3𝜎𝜎) , and for the Poisson distribution, it is 
𝑇𝑇ℎ𝑃𝑃 = −𝐿𝐿�𝜆𝜆 − 3√𝜆𝜆�. Only lower-bound thresholds are considered, as the focus is on detecting 
drops in record counts.  

The negative log likelihood for Poisson and Normal distributions are defined respectively as: 
 

−𝐿𝐿(𝑥𝑥|λ) = 𝜆𝜆 − 𝑥𝑥 log(𝜆𝜆) + log(𝑥𝑥!)                                                    ( 3 ) 
 



McArthur and El Mokhtari. 2024 Streaming Quality Detection Algorithm 

Proc. of the CIB W78 Conference 2024, October 1st-3rd 2024, Marrakesh, Morocco 

−𝐿𝐿(𝑥𝑥|μ,σ2) = 1
2

log(2𝜋𝜋) + log(𝜎𝜎) + (𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2
                                       ( 4 ) 

 
Figure 7 and Figure 8 illustrate the use of the calculated threshold to detect streaming issues in 
a real setting for both a Poisson distribution (e.g. device NCE-03) and a Normal distribution (e.g. 
device NAE-01). Alerts are generated when the record counts fall below the thresholds set 
previously for each distribution. The method allows for the detection of streaming interruptions 
and major deviations from the distribution mean. 

 

 
Figure 7. Anomaly detection with a Poisson-distributed Streaming Data (NCE-03). Top: Count, Middle: Negative 

log-likelihood; Bottom: Alert Signal. 

 

 
Figure 8. Anomaly detection with a Normally-distributed Streaming Data (NAE-01) Top: Count, Middle: Negative 

log-likelihood; Bottom: Alert Signal. 

5 Conclusions 
This paper discusses the challenges of monitoring data streaming quality in Building 
Automation Systems by testing various statistical distributions: Poisson, Normal, Log Normal, 
Hourly Normal, and Hourly Log Normal. Each device was fit to one of these distributions after 
conducting individual fitting tests. Each model has proven effective in detecting anomalies in 
data streams, which is crucial not only for identifying issues in streaming and investigating the 
source of the problem but also for ensuring the digital twin accurately reflects the building state. 

Our analysis shows that while the Poisson distribution was fit to only one device under the 
assumption that the mean remains consistent throughout the entire analysis time window, 
Normal and Log Normal distributions were suitable for nine devices. These distributions 
efficiently handle general trends and skewed data, which frequently occurs in building systems. 
For ten devices, data was distributed either normally or log-normally by hour. The remaining 
four devices exhibited patterns that require more advanced modeling to accurately capture 
their data distributions. 

The method was successfully applied to detect streaming interruptions or deviations from 
normal operations which significantly reduced the rate of false alerts that result from fixed 
thresholds, not accounting for the distribution of streaming data. Moreover, this algorithm has 
the advantage of simplicity, and can be deployed on edge devices within the building or on IoT 
devices with minimal computational overhead. Future work will aim to enhance these models to 
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improve their predictive accuracy and adapt to more complex temporal patterns in variable rate 
streaming for digital twins. 
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