Paper title: |
Predicting ground otion descriptions through artificial neural networks |
Authors: |
Bento J, Azevedo J, Oliveira C S |
Summary: |
"The present paper addresses the problem of predicting the description of an expected earthquake through the associated ground motion record that would be recorded at a given site. For that purpose, a number of previous ground motion records referring to 100 different earthquakes occurring within a reasonably small geographic area (Northern California) have been acquired and processed in order to extract some of the features that could describe them more synthetically than the full records. The attributes thus generated were used to train a feedforward network in order to map them into what can be called higher level descriptors of each earthquake, such as the magnitude or the peak accelerations, for example.Once such mapping is obtained, one may infer a number of attributes that would allow the artificial generation of the accelerograms corresponding to ""expected earthquakes"" described resorting to those higher level descriptors" |
Type: |
|
Year of publication: |
2000 |
Series: |
w78:2000 |
ISSN: |
2706-6568 |
Download paper: |
/pdfs/w78-2000-95.content.pdf |
Citation: |
Bento J, Azevedo J, Oliveira C S (2000).
Predicting ground otion descriptions through artificial neural networks. Construction Information Technology 2000. Taking the construction industry into the 21st century.; ISBN 9979-9174-3-1; Reykjavik, Iceland, June 28 - 30, 2000 (ISSN: 2706-6568),
http://itc.scix.net/paper/w78-2000-95
|